小批量梯度下降算法步骤_TensorFlow从0到1 - 6 - 解锁梯度下降算法

d3a90f239d5efd6dc9a1663618639f48.png

上一篇5 TF轻松搞定线性回归,我们知道了模型参数训练的方向是由梯度下降算法指导的,并使用TF的封装tf.train.GradientDescentOptimizer(0.01)(学习率为0.01)完成了机器自学习的过程。本篇开启梯度下降算法的黑盒一探究竟,并解锁几个TF API常用参数的真正含义:

  • learning rate;
  • steps;
  • epoch;
  • batch。

72653e0667023478956910896dff8d5a.png

一般函数的最小值问题

4 第一个机器学习问题引入了损失函数的定义,即待训模型参数为自变量,计算模型输出的均方差。函数C(a,b)的最小值处的(a, b)值即我们要找的模型参数的最优解。

c4dc6bd2dd04906e8baceb7a908c52e9.png
损失函数

本节将之前损失函数自变量a和b一般化表示为v1,v2,把求解损失函数的最小化问题,转换为更一般的函数C(v1,v2)最小化问题,C(v1,v2)具有任意的函数形式。如果找到一般的函数最小值求解方法,那么具有特殊形式的损失函数最小值求解自不在话下。

对于C是一个或者少数几个变量的函数,可以通过函数极值点处的导数特性来获得多元方程组,直接求解极值点。但是我们准备放弃这种尝试,因为对于一个真实世界的机器学习问题,其模型的复杂程度通常会远远的高于线性模型,参数的个数远不止两个,损失函数的形式会变成:C(v1, v2 ... vn),如果n数以亿计,用微积分的方法简直就是噩梦。

雪山速降的启发

把损失函数想象成前面图中的雪山,直觉上速降的最佳路径就是沿着雪山最陡峭的方向下山。

如果我们不能直接看出函数的最小值,或者通过直接求解的方式得到函数最小值,那么利用雪山速降的启发,总是沿着最陡峭的下降方向移动,就会最快到达最小值点。

回到数学的角度,考虑有两个自变量的二次函数C(v1, v2),它是一个曲面。假设有个小球靠自身重力滚落到曲面的底部,可以想象其路径也是沿着“最陡峭”的方向的。

那么“最陡峭”在数学上的表达是什么呢?

ecc39dd82cb33965cb58706a6a175a91.png
梯度下降

梯度的定义

微积分告诉我们,当把v1,v2,..., vn各个自变量移动一个很小的值,C将有如下变化:

b08c95a32258a01284ca3cf3464ff12d.png
微积分

梯度定义有:

c4013fe4e986493ac732c7124a9369db.png
梯度

v的变化量为∆v ≡ (∆v1, ∆v2, ..., ∆vn)T,则C的变化量可重写为梯度向量▽C与v的变化向量∆v的点乘:

8954be05d368cb9d541f428ef4611e59.png
C的增量

梯度下降算法

直觉上,如果v朝某个方向上移动,导致C的增量是个负数,那么就说明C在“下降”。

开下脑洞,直接令∆v = -η▽C,其中η是一个正数,代入公式B-C-F-3有:

∆C ≈ -η▽C·▽C = -η‖▽C‖2 ≤ 0,此时∆C一定小于等于0,C在下降。

幸运的是,数学上可以证明对于一个非常小的固定步长,∆v = -η▽C可以使C的减小最大化。这就是说,-η▽C是我们期望v移动的正确方向!其中η是学习率learning rate

“最陡峭的一小步”的数学解释就是沿着梯度的负方向上走一小步。“梯度下降”,名副其实。

只要一小步一小步朝着正确的方向移动,迟早可以走到C(v1, v2, ..., vn)的最小值处。

梯度下降的具体操作方法如下:

  1. 随机选取自变量的初始位置v(以后会专门讨论初始化的技巧);
  2. v → v' = v - η▽Cv(v移动到v',▽Cv是v处的梯度值,η保持不变);
  3. v' → v'' = v' - η▽Cv'(v'移动到v'',▽Cv'是v'处的梯度值,η保持不变);
  4. ...

v移动的次数,即训练的步数steps

v是各个自变量(v1, v2, ..., vn)的向量表示,那具体到每个自变量该如何移动呢?以v1,v2为例:

956826ed579c65893d55f5deeac01e84.png
分量的增量

随机梯度下降算法

到此,梯度下降算法解决了如何寻求一般函数C(v1, v2, ..., vn)的最小值问题(这个算法在有些情况下会失效,会在后面讨论),那么马上应用到机器学习吧。可是别急,还差一小步。

c46470e9e9c26767ffb59095a818da0a.png
损失函数

回到损失函数,再仔细看看其形式,发现它有个特别之处,即函数表达式与训练样本集密切相关。原因是它是每个样本方差的累加,最后再求均值。训练样本集通常成千上万,为了求取▽C难道真的需要先代入所有训练样本吗?

实践中,其实不是这样的,而是有更加巧妙的方法:

efb4da3705b35c1b56aa7e1ab9c7767f.png
样本梯度均值

损失函数的梯度▽C,可以通过单个样本梯度值▽Cx的均值得到。计算单个样本的梯度值▽Cx是相对容易的。如果你对这个公式持怀疑态度,这不奇怪,一个简单的消除疑虑的做法就是用之前的线性模型和损失函数,用两个样本值分别计算一下等式两边,看是否相等即可。

可即便如此,对于样本集成千上万个样本,对每个样本x都求其▽Cx,计算量还是太大了。假如故意减少样本数量会怎么样呢?也就是说,用一个小批量样本,通过其中每个样本▽Cx的均值,来近似计算▽C:

23235f54e7b9c5ae78f7851f0bc7b76b.png
样本梯度均值的近似

这就是实践中采用的方法,被称为随机梯度下降法。那个小批量样本就是一个batch

把全部样本集分成一批批的小样本集,每全部遍历使用过1次,就称为1次迭代,即epoch

据此,每个自变量更新的公式如下:

e809d73c1e49601a47f8149b2a02f03e.png
分量的增量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值