c 递归下降识别程序_以欧几里得算法为例去理解看似不可思议的递归过程

本文通过欧几里得算法解释递归思想,该算法用于计算两个正整数的最大公约数。通过将大数不断减小至与小数相等,最终得到的数即为最大公约数。递归程序通过不断调用自身,简化了计算过程,虽然代码可能较难理解,但能有效解决问题。例如,1247和493的最大公约数为29,通过递归计算得出。
摘要由CSDN通过智能技术生成
5d00870e1fc4f99b77057abd7ffbe89e.png

递归的思想就是将复杂的问题转化为简单的问题去解决,即“大事化小”,但递归的实现过程特别是程序编写上简化了繁琐的递推计算,导致代码上难以看懂,甚至感觉不可思议。下面以欧几里得算法为例来逐步理解递归过程。

描述:欧几里得算法用于计算两个正整数的最大公约数,其过程为:给定两个数a和b,用较大的数反复减去较小的数,直到得到的差c小于b,然后用b反复减去c,直至最后两个数字相等为止。那么,最终得到相等的这个数即为原a和b的最大公约数。

比如:a为1247,b为493,则1247-493=754,754-493=261(即c),反转493-261=232,反转261-232=29,反转232-29=203,203-29=174,174-29=145,145-29=116,116-29=87,87-29=58,58-29=29,即最终的29为1247与493的最大公约数。

编写程序过程:

1.递归终止条件为最终两个数相等;

2.两个数如果不相等,则反复相减。

知道这两个条件后,可以编写函数int Eu(int a,int b),假设a为其中大的一个数,则递归调用函数Eu(a-b,b),当a减去n次b后,得到c小于b,则调用Eu(c,b-c),不需考虑具体的调用过程,递归函数如下:

int Eu(int a,int b){if(a==b)return a;else if(a>b)return Eu(a-b,b);elsereturn Eu(a,b-a);}

完整验证程序如下:

#include using namespace std;int Eu(int a,int b);int main(){int a,b;cin>>a>>b;cout<b)return Eu(a-b,b);elsereturn Eu(a,b-a);}
技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值