
求动点的轨迹方程,是学习解析几何的基础,也是高考的常考点之一。今天给同学们总结了7种求解轨迹方程的方法
此外老师还整理了关于数学各模块题型的精讲+配套练习免费赠送(同学们可在文末获取)
定义法
运用解析几何中一些常用定义(例如圆,椭圆,双曲线和抛物线),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。常见一些基本曲线的定义如下:①圆:到定点的距离等于定长②椭圆:到两定点的距离之和为常数(大于两定点的距离)③双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)④抛物线:到定点与定直线距离相等。例题:已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。


备注:算出轨迹方程之后,要结合题意,注明变量x,y的范围
变式1:一动圆M与圆O1:x2+y2=1外切,而与圆O2:x2+y2-6x+8=0内切,那么动圆圆心M的轨迹方程。
变式2:若B(-8,0),C(8,0)为△ABC的两顶点,AC和AB两边上的中线长之和为30,求△ABC的重心轨迹方程。
直接法
如果动点运动的条件就是一些几何量的等量关系(几何、三角或者向量表