过椭圆外一点引两条切线方程_学霸分享丨高中数学「求解动点轨迹方程」的七种解法(讲解+变式)...

本文总结了解析几何中求动点轨迹方程的7种方法,包括定义法、直接法、几何法、相关点法、参数法、点差法和交轨法,并配以例题和变式,帮助学生理解和掌握解题技巧。同时,文中还提供数学题型精讲和配套练习的免费资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

92a43dde1e2e7b4bf5c47c55fc53b528.png

求动点的轨迹方程,是学习解析几何的基础,也是高考的常考点之一。今天给同学们总结了7种求解轨迹方程的方法

此外老师还整理了关于数学各模块题型的精讲+配套练习免费赠送(同学们可在文末获取)

定义法

运用解析几何中一些常用定义(例如圆,椭圆,双曲线和抛物线),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。常见一些基本曲线的定义如下:①圆:到定点的距离等于定长②椭圆:到两定点的距离之和为常数(大于两定点的距离)③双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)④抛物线:到定点与定直线距离相等。例题:已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。

d5d426b0e31af44d698fbe0bb5948995.png

b121d00698097d84fa568333815918b3.png

备注:算出轨迹方程之后,要结合题意,注明变量x,y的范围

变式1:一动圆M与圆O1:x2+y2=1外切,而与圆O2:x2+y2-6x+8=0内切,那么动圆圆心M的轨迹方程。

变式2:若B(-8,0),C(8,0)为△ABC的两顶点,AC和AB两边上的中线长之和为30,求△ABC的重心轨迹方程。

直接法

如果动点运动的条件就是一些几何量的等量关系(几何、三角或者向量表

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值