如何用定积分求椭圆的周长_微积分发展史

微积分是数学的基石,由牛顿与莱布尼茨开创,通过微分和积分研究函数的局部与整体特性。从早期的阿基米德的穷竭法到牛顿-莱布尼茨公式,再到实变函数论和泛函分析,微积分经历了漫长的发展过程,不断被完善和拓展。椭圆周长的计算是微积分应用的一个实例,展示了微积分在几何问题中的威力。经过多位数学家的努力,如柯西、阿贝尔、魏尔斯特拉斯等,微积分理论得以巩固,为现代数学分析奠定了基础。
摘要由CSDN通过智能技术生成

681ead943be07dde253d2cc33a762c05.png

有人说:如果将数学比作一棵大树,那么初等数学是树的根,繁杂的数学分支就是树枝,而树干的主要部分就是微积分。微积分可以堪称人类最伟大的成就之一。
微积分学包含微分学与积分学,从局部与整体来研究函数。微分学研究变化率、极值等函数的局部特征,导数与微分是其主要概念,求导的过程就是微分法,围绕着导数与微分的性质、计算、应用等形成了微分学的主要内容。积分学从整体上研究微小的变化积累的总效果,求积分的过程就是积分法,围绕着积分的性质、计算、推广与应用构成了积分学的主要内容。
谈到微积分,大家或许自然想到了牛顿与莱布尼兹,他们是微积分学的创始人。他们最大的贡献在于,总结了求导与求积分的一系列法则,发现求导与求积分是互逆的运算,并给出了著名的牛顿——莱布尼兹公式反映了这种互逆关系,使得本来独立发展的微分学与积分学结合成一门新的学科——微积分学。
然而由于早期微积分学理论的的不完整,成为第二次数学危机的导火索,英国主教贝克莱质疑函数中的Δx在求导过程既看成是0又看成不是0,形象的称其为:死去的幽灵。逐渐出现了以贝克莱悖论为例的数学空洞,等待着又一批杰出的数学家填补。最终经过柯西、阿贝尔、威尔斯特拉斯等无数杰出科学家的努力,微积分学大厦的地基终于被打牢。微积分学开始真正的展现其独特的数学魅力!
微积分真正成为一门数学学科,是在十七世纪,然而在此这前微积分已经一步一步地跟随人类历史的脚步缓慢发展着。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
[原文] 一、为了更好、更准确的说明数学里的一些词句概念,在这里引进一个基,界,及相似形形概念。 1、什么是基?基是长轴相等且相对不变的同类几何图形的长轴,界:这里是界线,比如说零是正数和负数的界。界是指几何面两轴相等,几何体三轴同时相等的几何体。 ①长相等的长方形,包括正方形是同基长方形。长叫做这些长方形的同基长,同基里的正方形是长方形的界,而这些长方形与界正方形是相似面积。 ② 椭圆:长轴相等的椭圆是同基椭圆。 以短轴相等的椭圆,包括圆,也是同基椭圆,圆是两类椭圆的分界。长轴相等的椭圆的长轴叫同基长。同基里的圆面积(或周长)是椭圆面积(或周长)的面积(或周长)的界。 ③抛物面:长轴相等的抛物面是同基抛物面。两轴 相等的抛物面面积为同基抛物面的界。两轴相等抛 物面的弧长,为同基抛物面弧长界。 ④椭圆球:球体积是同基面椭圆球体积的体积界。 球表面积是同基面椭圆球面积的的曲面面积界。画出凸半球的同基面的球曲面面积界,(即三轴相等)以同基面为底面,连接上顶点,做内接圆锥形的界(三轴相等)以AB即2a为直径的圆面积;是凸半球和内接圆锥形的同基面S,S面为基面,AO=OB=OC=a,当OC<AO时,AO=a为基长,当OC>AO时,OC为基长,在计算弧长和凸球曲面面积的公式中,两轴相比时,长轴即基长,永远为分母。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值