本文使用 Zhihu On VSCode 创作并发布
(由于笔者在
虽然本文的习题主要是曲线积分,但这里先把曲线积分、曲面积分和两个定理的大纲先列出来,这样方便梳理清楚它们的联系。
做功与
在计算做功时,我们讲到了非保守力和保守力,这在数学上对应的就是
如果一个力
于是如果我们能求得
求得
进行配凑,我们得到了
另一个判断方法则为分别计算它们对彼此的偏导数,若不相等则不存在。
更常用的做功积分则为:
此时无论是否
曲线积分(
格林公式的理解
格林公式在数学上用于计算环路积分,但其也有着物理意义;
格林公式是求流量的公式,因此我们需要先表示出
其中
当上式等于
于是我们得到格林公式的
另一种形式则可以由
它的几何意义是延法向量做的功。当上式大于
于是我们得到格林公式的
两个形式算出的结果相同,但要注意,两种形式中
如何通俗易懂地理解格林公式?
格林公式的清除奇点:当偏导数不连续时,从奇点周围挖出一个小圆、椭圆或其它曲线单独计算,其它部分用格林公式。这种方法又称挖点法,挖点法在网上资料较少,有待补充。
Stokes' Theorem
在格林公式中,有一个概念是
对于
可以利用行列式进行记忆:
则:
注意
重积分换元
格林公式将环路积分转换为重积分,而计算重积分时往往需要换元;
重积分换元时,需要把新微分用
比如说常见的极坐标换元,
那么:
于是得到了:
面积积分与换元法
面积积分
面积积分有三个公式:
1.换元法:
2.知道面的方程
3.知道其中一维的坐标关于另外两个坐标的方程:
第一类曲线积分(对弧长积分)
-
,其中
是圆心在原点,半径为
的圆周;
(极坐标换元为一元函数积分即可)
解:
设
2.
(已经给出了
解:
3.
(1的拓展)
解:
设
4.
(2的拓展)
解:
5.
(2的拓展)
解:
6.
(这题可以先极坐标换元,再用
解:
因此
7. 曲线
解:
设
(求质心)求密度为常值的摆线
解:
因此重心为
第二类曲线积分(对坐标积分)
-
,其中
是上半椭圆
,方向从
到
;
解:
设
则:
2.
解:
设
则:
3.
解:
设:
则:
4.
解:
设:
则:
5. 有一力场,其力的大小与力的作用点到
(本题其实可以归到第一类曲线积分,如果能观察出力与路径在同一方向的话;当然,用第二类曲线积分也是可做的)
解:
设:
由于:
解出:
即:
则:
6. 设
解:
设
环路积分(格林公式与
环路积分也是第二类曲线积分的一种,有的可以直接积分,有的则需要用格林公式。
-
,其中
为圆周
,方向为逆时针方向;
(代入格林公式的
解:
对于不经过原点的部分,令:
则:
对于原点附近的一个小圆
设
因此,原式的结果为
事实上,由于积分区域规则,也可以直接用第二类曲线积分的方法而不是格林公式去做;但如果积分区域只是一个包含原点的不规则区域时,就有必要用格林公式了。
2.
(直接代入
解:
设
(右手定则,可以发现这样的法向量符合方向)
故:
这里之所以直接代入
事实上,涉及