如何用定积分求椭圆的周长_做题笔记:曲线积分

本文详细探讨了如何使用定积分求椭圆的周长,通过讲解曲线积分的概念,包括第一类曲线积分、第二类曲线积分,以及格林公式和斯托克斯定理的应用。文中列举了多个例题,解析了极坐标换元法和重积分换元法,展示了计算过程,有助于深化理解曲线积分在解决实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文使用 Zhihu On VSCode 创作并发布

(由于笔者在

这块基础很弱,之后应该还会做一部分这方面的题目)

虽然本文的习题主要是曲线积分,但这里先把曲线积分、曲面积分和两个定理的大纲先列出来,这样方便梳理清楚它们的联系。

做功与

在计算做功时,我们讲到了非保守力和保守力,这在数学上对应的就是

.

如果一个力

为保守力,那么必须存在函数
使得
.

于是如果我们能求得

,便可以不看路径向量而直接用终点减去起点的值。

求得

可以对
的每个变量分别积分,例如
,则:

进行配凑,我们得到了

,若配凑不成功则
不存在,那么力
不为保守力。

另一个判断方法则为分别计算它们对彼此的偏导数,若不相等则不存在。

更常用的做功积分则为:

此时无论是否

都适用。

曲线积分(

)除了做功这种向量积分,还可以对函数进行积分,此时:

格林公式的理解

格林公式在数学上用于计算环路积分,但其也有着物理意义;

格林公式是求流量的公式,因此我们需要先表示出

其中

为流量向量
轴分量,
轴分量,也就是说
;这也叫做
,记作
.它的几何意义就是延切线做的功。

当上式等于

时,液体发散地往外流;当大于
时,液体顺时针流动;当小于
时,液体逆时针流动。

于是我们得到格林公式的

:

另一种形式则可以由

得到:

它的几何意义是延法向量做的功。当上式大于

时,气体扩张;当上式小于
时,气体收缩;当上式等于
时,气体体积不变。

于是我们得到格林公式的

:

两个形式算出的结果相同,但要注意,两种形式中

不可以直接替代,需要看清后面跟的是
还是

如何通俗易懂地理解格林公式?

格林公式的清除奇点:当偏导数不连续时,从奇点周围挖出一个小圆、椭圆或其它曲线单独计算,其它部分用格林公式。这种方法又称挖点法,挖点法在网上资料较少,有待补充。

Stokes' Theorem

在格林公式中,有一个概念是

,即
,因此容易想到,其实
也应该有沿
方向的
;事实上,
就是格林公式的拓展:

对于

,定义:

可以利用行列式进行记忆:

则:

注意

和格林公式的结果都是针对逆时针方向的,如果题目要求顺时针方向,则要添加负号;
的顺逆时针方向取决于
的方向,即右手螺旋定则。

重积分换元

格林公式将环路积分转换为重积分,而计算重积分时往往需要换元;

重积分换元时,需要把新微分用

行列式进行计算:

比如说常见的极坐标换元,

那么:

于是得到了:

面积积分与换元法

把环路积分转化为面积积分。

面积积分

的特殊之处往往是它涉及到三个变量,但是积分形式却不是
而是
.

面积积分有三个公式:

1.换元法:

2.知道面的方程

,求出它的法向量
,则:

3.知道其中一维的坐标关于另外两个坐标的方程:

第一类曲线积分(对弧长积分)

  1. ,其中
    是圆心在原点,半径为
    的圆周;

(极坐标换元为一元函数积分即可)

解:

,则:

2.

,其中
是右半圆周
;

(已经给出了

,代入即可)

解:

3.

,其中
是圆周
;

(1的拓展)

解:

,则:

4.

,其中
为星形线
;

(2的拓展)

解:

5.

,其中曲线
的参数方程为
;

(2的拓展)

解:

6.

,其中
是双纽线的右半支:
;

(这题可以先极坐标换元,再用

代入
)

解:

因此

7. 曲线

的线密度
,试求曲线在
之间的质量。

解:

,则:

(求质心)求密度为常值的摆线

的重心。

解:

因此重心为

.

第二类曲线积分(对坐标积分)

  1. ,其中
    是上半椭圆
    ,方向从
    ;

解:

,换元令:

则:

2.

,其中
为曲线
,方向从
;

解:

,换元令:

则:

3.

,其中
;

解:

设:

则:

4.

,其中
;

解:

设:

则:

5. 有一力场,其力的大小与力的作用点到

平面的距离成反比,方向指向原点,试计算当质点沿直线
从点
移动至点
时,该力场所做的功.

(本题其实可以归到第一类曲线积分,如果能观察出力与路径在同一方向的话;当然,用第二类曲线积分也是可做的)

解:

设:

由于:

解出:

即:

则:

6. 设

为曲线
上相应于
的曲线弧,试把第二类曲线积分
化为第一类曲线积分.

解:

,则:

环路积分(格林公式与

)

环路积分也是第二类曲线积分的一种,有的可以直接积分,有的则需要用格林公式。

  1. ,其中
    为圆周
    ,方向为逆时针方向;

(代入格林公式的

,注意要用挖洞法清除奇点)

解:

对于不经过原点的部分,令:

则:

对于原点附近的一个小圆

,使用第二类曲线积分的方法单独计算:

,极坐标换元:

因此,原式的结果为

事实上,由于积分区域规则,也可以直接用第二类曲线积分的方法而不是格林公式去做;但如果积分区域只是一个包含原点的不规则区域时,就有必要用格林公式了。

2.

,其中
为取逆时针方向的闭折线
,这里的
为点
;

(直接代入

即可)

解:

,则:

(右手定则,可以发现这样的法向量符合方向)

故:

这里之所以直接代入

,是因为被积函数是个常数,那么直接算出积分域面积即可,而积分域又是个规则的等边三角形,因此非常好算;当然,也可以用第二类曲线积分的方法计算,但那就需要分三条线段讨论了。

事实上,涉及

的题目在代入后,往往还要计算一个面积积分,那时就不会这么简单了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值