视频教程-Tensorflow 模型 C++部署实战-深度学习

这是一门深度学习课程,专注于Tensorflow模型的C++部署实战。由郭秀江讲师指导,讲解如何将用Python训练的模型部署到实际产品中,包括模型的导出、加载和C++接口的使用,适用于已有深度学习模型训练基础并希望进行部署的学员。课程提供完整源码,涵盖模型加密和多卡支持等内容。
摘要由CSDN通过智能技术生成

扫码下载「CSDN程序员学院APP」,1000+技术好课免费看

APP订阅课程,领取优惠,最少立减5元 ↓↓↓

订阅后:请点击此处观看视频课程

 

视频教程-Tensorflow 模型 C++部署实战-深度学习

学习有效期:永久观看

学习时长:840分钟

学习计划:14天

难度:

 

口碑讲师带队学习,让你的问题不过夜」

讲师姓名:郭秀江

技术经理

讲师介绍:信息及信号处理博士学位,10年以上计算机图像及视频开发经验;先后就职国内大型上市公司、IT集成商、500强外企的高级开发工程师、资深技术专家、技术经理等职务。具有10年以上视频及图像处理开发经验,3年以上人工智能开发经验。开发了很多视频编解码及人工智能项目。

☛点击立即跟老师学习☚

 

「你将学到什么?」

您将在本课程中学习到用Tensorflow Python接口训练的模型,如和部署到实际产品中。适用人群可以帮助会训练深度学习的模型的同学,学习如何部署模型,特别是实际产品中。

课程简介

  • 课程目标

    让学员熟悉用TensorFlow系列了模型之后,如何部署到实际产品中,并能够自己写代码导出模型和加载模型。

  • 适用人群

    人工智能领域从业者 or 深度学习实际产品开发人员或者想了解训练模型后,如何部署的学员。

  • 课程简介

       让学员可以从实战角度深度的学习深度学习产品开发过程,并能够自己写代码实现TF模型的导出和加载,并用C++接口部署到产品中,如何解决模型加密,多卡支持等,并了解Tensorflow源码。

  • 在课程资料和答疑部分提供了完整的源码下载;

 

「课程学习目录」

1.课程介绍
2.CUDA环境的建立
3.python环境的建立
4.C++编译开发环境的建立
5.分类tf2模型的导出
6.检测模型的导出(1)
7.检测模型的导出(1)
8.模型加密工具的开发(命令行处理)
9.模型加密工具的开发(加密部分)
10.模型加密工具的开发(解密部分)
11.tf2.0-alpha版本的源码阅读
12.模型API数据结构的定义
13.模型API函数接口的定义
14.Tensor内存的申请和释放
15.定义内部类和接口
16.内部类构造函数的实现
17.内部类私有函数的实现
18.内部类模型加载函数的实现
19.内部推理函数的实现
20.接口和内部类的连接代码
21.编译和调试库代码
22.建立测试工程项目
23.测试TF2.0分类模型的加载和推理(1)
24.测试TF2.0分类模型的加载和推理(2)
25.检测模型SSD的测试和推理
26.解密模型功能开发(1)
27.解密模型功能开发(2)
28.加密模型功能测试
29.多GPU卡的开发
30.window开发环境搭建
31.window代码移植
32.windows加载模型测试

 

7项超值权益,保障学习质量」

  • 大咖讲解

技术专家系统讲解传授编程思路与实战。

  • 答疑服务

专属社群随时沟通与讲师答疑,扫清学习障碍,自学编程不再难。

  • 课程资料+课件

超实用资料,覆盖核心知识,关键编程技能,方便练习巩固。(部分讲师考虑到版权问题,暂未上传附件,敬请谅解)

  • 常用开发实战

企业常见开发实战案例,带你掌握Python在工作中的不同运用场景。

  • 大牛技术大会视频

2019Python开发者大会视频免费观看,送你一个近距离感受互联网大佬的机会。

  • APP+PC随时随地学习

满足不同场景,开发编程语言系统学习需求,不受空间、地域限制。

 

「什么样的技术人适合学习?」

  • 想进入互联网技术行业,但是面对多门编程语言不知如何选择,0基础的你
  • 掌握开发、编程技术单一、冷门,迫切希望能够转型的你
  • 想进入大厂,但是编程经验不够丰富,没有竞争力,程序员找工作难。

 

「悉心打造精品好课,14天学到大牛3年项目经验」

【完善的技术体系】

技术成长循序渐进,帮助用户轻松掌握

掌握深度学习知识,扎实编码能力

【清晰的课程脉络】

浓缩大牛多年经验,全方位构建出系统化的技术知识脉络,同时注重实战操作。

【仿佛在大厂实习般的课程设计】

课程内容全面提升技术能力,系统学习大厂技术方法论,可复用在日后工作中。

 

「你可以收获什么?」

已经学会训练tf模型或者会在python加载模型验证tensorflow模型的人员

想知道如何在实际产品中使用tensorflow模型的人员

想知道如果用C++调用tensorflow模型的人员

想知道如何优化gpu加载模型性能的人员

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值