辛卜生公式的几何意义是用抛物线y=P2(x)围成的曲边梯形面积代替由y=f(x)围成的曲边梯形面积图2。 例:用Newton-Cotes公式计算 解:当n取不同值时,计算结果如下所示。 I准=0.9460831 * 工程数学 工程数学 * 第七章 数值积分与数值微分 第一节??? 等距节点的Newton-Cotes求积公式 第二节 复化求积公式 第三节(*) ??? 外推算法 第四节??? Gauss型求积公式 引 言 由于被积函数的原函数F(x)不可能找到,牛顿-莱布尼兹公式也就无能为力了。 下面推导插值型求积公式 设 x0 ,x1 ,…,xn∈[a,b], pn(x)是f(x)的n次Lagrange 插值多项式 则有 插值型求积公式 其中 截断误差或余项为 li(x)为Lagrange插值基函数。 Ai (i=0,1,…,n)称为求积系数, xi (i=0,1,…,n)称为求积节点。 一、 牛顿—柯特斯求积公式的导出 将积分区间[a,b] n等分,节点xi为 xi=a+ih, i=0,1,2,…,n 其中h=(b?a)/n。有 第一节 等距节点的牛顿—柯特斯求积公式 当求积节点等距分布时,插值型求积公式称为 牛顿—柯特斯(Newton-Cotes) 求积公式。 其中 Ci(n) 称为柯特斯系数。 于是牛顿—柯特斯求积公式为 引进变换 x=a+th , 0≤t≤n xj=a+jh, j=0,1,2,…,n 二、两种特殊的数值求积公式: (1)梯形公式(n=1) x0 =a, x1=b, h= b- a, c0(1)=c1(1) =1/2 梯形公式的几何意义 是用四边梯形x0 ABx1的 面积代替曲边梯形的面积。 x y 0 A B y=P1(x) y=f(x) f0 f1 x0=a x1=b 图1 (2)辛卜生公式 (n=2) 辛卜生公式又称为抛物线公式。 x0 =a, x1=a+h, x2=b, h= (b-a)/2 C0(2) =1/6 , C1(2) =4/6 , C2(2) =1/6 x y x0 x2 x1 y=P2(x) y=f(x) 0 图2 例 : 用梯形公式与辛卜生公式 求 的近似值。 解: 辛卜生公式 I=0.7668010 梯形公式 8 7 6 5 4 3 2 1 c8 c7 c6 c5 c4 c3 c2 c1 c0 n 三、牛顿—柯特斯系数 例 n=3 为3/8 辛卜生公式 x0 =a, x1=a+h, x2=a+2h, x3=b , h= (b-a)/3 n=4为 Cotes 公式 x0 =a, x1=a+h, x2=a+2h, x3=a+3h, x4=b , h= (b-a)/4 0.9460830 5 0.9460830 4 0.9461109 3 0.9461359 2 0.9270354 1 近似结果 n 四、代数精度 定义1:若求积公式 对一 切不高于m次的多项式p(x)都等号成立,即R(p (x))=0; 而对于某个m+1次多项式等号不成立,则称此公式的 代数精度为m. 代数精度求法 从?(x)=1,x,x2,x3…依次验证求积公式是否成立,若第一个不成立的等式是xm,则其代数精度是m-1. 代数精度越高,数值求积公式越精确 定义2:若求积公式 对 ?(x)=1,x,x2,x3…xm, 都等号成立,即R(xi)=0;而对于xm+1 等号不成立,则称此公式 的代数精度为m. 例1:证明下面数值求积公式具有1次代数精度. 所以求积公式具有1次代数精度。 例2:设有 成立,确定 A0、 A1 、 A2,使上述数值求积公式的代数精度尽可能高,并求代数精度。 解:分别取?(x)=1,x,x2,则有 A0 +A1 + A2=2 -A0 + A2=0 A0 + A2=2/3 解得 A0 =1/3,A1 =4/3, A2=1/3; 取 ?(x)=x3,左=右=0;
牛顿柯特斯求积公式matlab,牛顿-柯特斯求积公式总结.ppt
最新推荐文章于 2024-03-30 08:56:43 发布