数值分析复习:Newton-Cotes求积公式及复合求积公式

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

中矩形公式

定义:中矩形公式(中节点公式)
节点仅为区间中点的数值积分公式,即 I ( f ) ≈ f ( a + b 2 ) ( b − a ) I(f)\approx f(\frac{a+b}{2})(b-a) I(f)f(2a+b)(ba)

性质
f ∈ C 2 [ a , b ] f\in C^2[a,b] fC2[a,b],则上述公式是代数精度为1的插值型数值积分公式

梯形公式

定义:梯形公式
节点为区间端点,且 f f f近似为这两点上的一次L插值的数值积分公式
即对节点 x 0 = a , x 1 = b x_0=a,x_1=b x0=a,x1=b,有
[P_1(x)=\frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b)][I(f)\approx\int_a^bP_1(x)\mathrm{d}x=\frac{f(a)+f(b)}{2}(b-a)]

性质
f ∈ C 2 [ a , b ] f\in C^2[a,b] fC2[a,b],则上述公式是代数精度为1的插值型数值积分公式

Simpson公式

定义:Simpson(辛普森)公式
节点为区间端点及中点,且 f f f近似为这两点上的二次L插值的数值积分公式
即对节点 x 0 = a , x 1 = a + b 2 , x 2 = b x_0=a,x_1=\frac{a+b}{2},x_2=b x0=a,x1=2a+b,x2=b,有
P 2 ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) f ( a ) + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) f ( a + b 2 ) + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) f ( b ) \begin{split} P_2(x)=&\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(a) +\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(\frac{a+b}{2})\\ &+\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(b) \end{split} P2(x)=(x0x1)(x0x2)(xx1)(xx2)f(a)+(x1x0)(x1x2)(xx0)(xx2)f(2a+b)+(x2x0)(x2x1)(xx0)(xx1)f(b) I ( f ) ≈ ∫ a b P 2 ( x ) d x = f ( a ) + 4 f ( a + b 2 ) + f ( b ) 6 ( b − a ) I(f)\approx\int_a^bP_2(x)\mathrm{d}x=\frac{f(a)+4f(\frac{a+b}{2})+f(b)}{6}(b-a) I(f)abP2(x)dx=6f(a)+4f(2a+b)+f(b)(ba)

性质
f ∈ C 4 [ a , b ] f\in C^4[a,b] fC4[a,b],则上述公式是代数精度为3的插值型数值积分公式

Newton-Cotes(牛顿-科特斯)求积公式

定义:Newton-Cotes 求积公式
节点为 [ a , b ] [a,b] [a,b]上的 n + 1 n+1 n+1个等距节点: a = x 0 < x 1 < ⋯ < x n = b a=x_0<x_1<\dots<x_n=b a=x0<x1<<xn=b,记相邻节点间距为h,f近似为节点上的n次L插值的数值积分公式
即对节点 a = x 0 < x 1 < ⋯ < x n = b a=x_0<x_1<\dots<x_n=b a=x0<x1<<xn=b,记相邻节点间距为h,作代换 x = a + t h x=a+th x=a+th
P n ( x ) = ∑ k = 0 n ( ∏ j = 0 , j ≠ k n x − x j x k − x j ) f ( x k ) = ∑ k = 0 n ( ∏ j = 0 , j ≠ k n t − j k − j ) f ( x k ) ≜ P ( t ) \begin{split} P_n(x)&=\sum\limits_{k=0}^n\left(\prod\limits_{j=0,j\neq k}^{n}\frac{x-x_j}{x_k-x_j}\right)f(x_k)\\ &=\sum\limits_{k=0}^n\left(\prod\limits_{j=0,j\neq k}^{n}\frac{t-j}{k-j}\right)f(x_k)\\ &\triangleq P(t)\\ \end{split} Pn(x)=k=0n j=0,j=knxkxjxxj f(xk)=k=0n j=0,j=knkjtj f(xk)P(t)

从而
I n ( f ) = ∫ a b P n ( x ) d x = h ∫ 0 n P ( t ) d t = b − a n ∫ 0 n ∑ k = 0 n ( ∏ j = 0 , j ≠ k n t − j k − j ) f ( x k ) d t ≜ ∑ k = 0 n ( b − a ) C k ( n ) f ( x k ) \begin{split} I_n(f)&= \int_a^bP_n(x)\mathrm{d}x=h\int_0^nP(t)\mathrm{d}t\\ &=\frac{b-a}{n}\int_0^n\sum\limits_{k=0}^n\left(\prod\limits_{j=0,j\neq k}^{n}\frac{t-j}{k-j}\right)f(x_k)\mathrm{d}t\\ &\triangleq \sum\limits_{k=0}^n(b-a)C_k^{(n)}f(x_k) \end{split} In(f)=abPn(x)dx=h0nP(t)dt=nba0nk=0n j=0,j=knkjtj f(xk)dtk=0n(ba)Ck(n)f(xk) 其中 C k ( n ) = 1 n ∫ 0 n ∏ j = 0 , j ≠ k n t − j k − j d t C_k^{(n)}=\frac{1}{n}\int_0^n\prod\limits_{j=0,j\neq k}^{n}\frac{t-j}{k-j}\mathrm{d}t Ck(n)=n10nj=0,j=knkjtjdt 称为Newton-Cotes求积系数

命题:Newton-Cotes求积系数的性质

  1. C k ( n ) = C n − k ( n ) C_k^{(n)}=C_{n-k}^{(n)} Ck(n)=Cnk(n)
  2. ∑ k = 0 n C k ( n ) = 1 \sum\limits_{k=0}^nC_k^{(n)}=1 k=0nCk(n)=1
  3. n ≤ 7 n\leq 7 n7 时, C k ( n ) C_k^{(n)} Ck(n) 均正; n > 8 n>8 n>8 时, C k ( n ) C_k^{(n)} Ck(n) 有正有负

证明思路
(1)易证
(2)只需注意到:当 f = 1 f=1 f=1时,Newton-Cotes求积公式准确成立,计算即得
(3)逐个计算可得

命题:Newton-Cotes求积公式的代数精度
Newton-Cotes求积公式至少有n阶代数精度,若n为偶数,则有 n + 1 n+1 n+1阶代数精度

证明思路
容易验证Newton-Cotes求积公式是插值型的,由代数精度的刻画,只需验证
∫ a b ω n + 1 ( x ) d x = 0 \int_a^b\omega_{n+1}(x)\mathrm{d}x=0 abωn+1(x)dx=0 ∫ a b ω n + 1 ( x ) d x = ∫ 0 n t ( t − 1 ) ⋯ ( t − n ) d t ⋅ h n + 2 = ∫ − k k ( u + k ) ⋯ ( u + 1 ) u ( u − 1 ) ⋯ ( u − k ) d u ⋅ h n + 2 = ∫ − k k u ( u 2 − 1 ) ⋯ ( u 2 − k 2 ) d u ⋅ h n + 2 = 0 \begin{split} \int_a^b\omega_{n+1}(x)\mathrm{d}x &=\int_0^nt(t-1)\cdots(t-n)\mathrm{d}t\cdot h^{n+2}\\ &=\int_{-k}^{k}(u+k)\cdots(u+1)u(u-1)\cdots(u-k)\mathrm{d}u\cdot h^{n+2}\\ &=\int_{-k}^{k}u(u^2-1)\cdots(u^2-k^2)\mathrm{d}u\cdot h^{n+2}=0\\ \end{split} abωn+1(x)dx=0nt(t1)(tn)dthn+2=kk(u+k)(u+1)u(u1)(uk)duhn+2=kku(u21)(u2k2)duhn+2=0上述等式进行的操作分别是

  1. x = a + t h x=a+th x=a+th
  2. n = 2 k , u = t − n 2 n=2k,u=t-\frac{n}{2} n=2k,u=t2n
  3. 注意到被积函数是奇函数

各种求积公式的性质

命题:误差估计

  1. 梯形公式的余项估计:设 f ∈ C 2 [ a , b ] f\in C^2[a,b] fC2[a,b],则 E 1 ( f ) = − 1 12 f ′ ′ ( ξ ) ( b − a ) 3 E_1(f)=-\frac{1}{12}f''(\xi)(b-a)^3 E1(f)=121f′′(ξ)(ba)3
  2. Simpson公式的余项估计:设 f ∈ C 4 [ a , b ] f\in C^4[a,b] fC4[a,b],则 E 3 ( f ) = − 1 2880 f ( 4 ) ( ξ ) ( b − a ) 5 E_3(f)=-\frac{1}{2880}f^{(4)}(\xi)(b-a)^5 E3(f)=28801f(4)(ξ)(ba)5

证明思路
(1)由Newton插值余项以及积分中值定理 E 1 ( f ) = ∫ a b f ( a , b , x ) ( x − a ) ( x − b ) d x = f ( a , b , ξ ) ∫ a b ( x − a ) ( x − b ) d x = − 1 12 f ′ ′ ( ξ ) ( b − a ) 3 \begin{split} E_1(f)&=\int_a^bf(a,b,x)(x-a)(x-b)\mathrm{d}x\\ &=f(a,b,\xi)\int_a^b(x-a)(x-b)\mathrm{d}x\\ &=-\frac{1}{12}f''(\xi)(b-a)^3\\ \end{split} E1(f)=abf(a,b,x)(xa)(xb)dx=f(a,b,ξ)ab(xa)(xb)dx=121f′′(ξ)(ba)3
(2)类似地使用Hermite插值余项

命题:计算的稳定性
n ≤ 7 n\leq 7 n7 时,计算稳定; n > 7 n>7 n>7 时计算未必稳定

证明思路
设误差 f ( x k ) − f ~ ( x k ) = ϵ k f(x_k)-\tilde{f}(x_k)=\epsilon_k f(xk)f~(xk)=ϵk,则 ∣ ∑ k = 0 n C k ( n ) f ( x k ) − ∑ k = 0 n C k ( n ) f ~ ( x k ) ∣ ≤ max ⁡ k ∣ ε k ∣ ∑ k = 0 n ∣ C k ( n ) ∣ |\sum\limits_{k=0}^nC_k^{(n)}f(x_k)-\sum\limits_{k=0}^nC_k^{(n)}\tilde{f}(x_k)|\leq\max\limits_k|\varepsilon_k|\sum\limits_{k=0}^n|C_k^{(n)}| k=0nCk(n)f(xk)k=0nCk(n)f~(xk)kmaxεkk=0nCk(n)
n ≤ 7 n\leq 7 n7 时, ∑ k = 0 n ∣ C k ( n ) ∣ = 1 \sum\limits_{k=0}^n|C_k^{(n)}|=1 k=0nCk(n)=1 n > 7 n>7 n>7 ∑ k = 0 n ∣ C k ( n ) ∣ > 1 \sum\limits_{k=0}^n|C_k^{(n)}|>1 k=0nCk(n)>1

注:关于收敛性,由于Newton-Cotes求积公式是插值型的,故也有不收敛的可能

复合求积公式

为克服Newton-Cotes求积公式高次不稳定的特点,类似多项式插值,用分段低次多项式代替高次多项式;
复合求积公式的基本思想即为在每个小区间上使用低阶Newton-Cotes求积公式;下面以复合梯形公式和复合Simpson公式为例;

定义:复合梯形公式
I ( f ) = ∑ i = 0 n − 1 ∫ x i x i + 1 f ( x ) d x ≈ h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] I(f)=\sum\limits_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x\approx \frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] I(f)=i=0n1xixi+1f(x)dx2hi=0n1[f(xi)+f(xi+1)]

命题:余项估计
f ∈ C 2 [ a , b ] f\in C^2[a,b] fC2[a,b],则 E ( f ) ≤ h 2 12 M ( b − a ) E(f)\leq\frac{h^2}{12}M(b-a) E(f)12h2M(ba) 其中 M = max ⁡ ∣ f ′ ′ ( x ) ∣ M=\max|f''(x)| M=maxf′′(x)

定义:复合Simpson公式
I ( f ) = ∑ i = 0 n − 1 ∫ x 2 i x 2 i + 2 f ( x ) d x ≈ h 3 ∑ i = 0 n − 1 [ f ( x 2 i ) + f ( x 2 i + 1 ) + f ( x 2 i + 2 ) ] I(f)=\sum\limits_{i=0}^{n-1}\int_{x_{2i}}^{x_{2i+2}}f(x)\mathrm{d}x\approx \frac{h}{3}\sum\limits_{i=0}^{n-1}[f(x_{2i})+f(x_{2i+1})+f(x_{2i+2})] I(f)=i=0n1x2ix2i+2f(x)dx3hi=0n1[f(x2i)+f(x2i+1)+f(x2i+2)]

命题:余项估计
f ∈ C 4 [ a , b ] f\in C^4[a,b] fC4[a,b],则 E ( f ) ≤ h 4 90 M ( b − a ) E(f)\leq\frac{h^4}{90}M(b-a) E(f)90h4M(ba)其中 M = max ⁡ ∣ f ( 4 ) ( x ) ∣ M=\max|f^{(4)}(x)| M=maxf(4)(x)

参考书籍:《数值分析》李庆扬 王能超 易大义 编

  • 70
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值