多项式辗转相除法求最大公约数_多项式的一些性质

本文探讨了高中数学中多项式的性质,尤其是极值点的计算,指出奇数次多项式必有至少一个实根,并通过举例说明如何找寻多项式的极值点。此外,提出了关于多项式与直线、二次函数交点数量的问题,以及多项式优化问题,鼓励读者运用高中知识解决这些问题。
摘要由CSDN通过智能技术生成

多项式的性质是代数学的基础之一,然而高中数学中并没有深入地讲述多项式的性质。由于高中研究手段的限制,在这篇文章中我只以习题的形式给出几个特殊化的例子。

文里给出的例题应该都是相当经典的,不过似乎鲜有人写这方面的内容。虽然看起来很棘手,但是以下的例子都是有简洁的初等解法的,多思考应当不难。


在高中阶段,我们无法证明代数基本定理,但我们可以证明代数基本定理的弱化版本:

次多项式的实根不超过
个。

掌握了长除法之后,这几乎是显然的。即使在高中数学的框架下,这个结论也经常被默认。

如果需要去证明的话,只要证明若

是多项式的实根,利用长除法必然能分解出
因式,之后归纳即可。

例1

证明:

(1)

有且仅有
个极值点;

(2)

有且仅有
个极值点.

私以为这样的题目才是高中生需要掌握的基础……可惜指望全国卷能出这类题目是不现实的。

放一个简要题解。

(1)首先注意到

因此
正负交错。

这是因为

利用复合函数求导公式即可。

因而

注意到

次多项式且
的最高次项的系数是

因此

所有的
即为
极值点。

(2)

同样可以得到

正负交错。

不过这样还少了一个极值点,剩下的一个极值点实际上在

趋于负无穷时

的正负只取决于
,这个正负性恰好与
相反。

分奇偶讨论找到剩下的一个极值点

所有的

即为极值点。

毫无疑问,奇数次的多项式必有至少一个实根。不过是否有同学将这个结论用高中方法证明过?

虽然是很无聊的取点,但这也是高中数学的基本功之一。不过没办法,毕竟高考是看分数……为了多考那么几分,总得要做一些无趣的事情。

正所谓无趣的题目千篇一律,有趣的题目考试不考==

例2 (1)对于给定的正整数

若对于任意
次多项式
均能找到一条直线
使得二者的图像有
个交点,试将
的最大值
表示为关于
的函数并证明.

(2) 将(1) 中

为直线的条件改为
是二次函数进行讨论.

(3) 当

次多项式时,直接写出
.

题意有点绕。。这题做法估计会很多,希望有人能够私我让我涨姿势qwq。

例3

个零点,
中至多有多少项为

上面的题目是研究多项式零点的题,来看一下例4:

例4 证明平面内

曲线
曲线 交点个数的最大值不小于

应该是比较简单的构造题。


高中多研究的是关于多项式的优化问题,而相关的优化问题真的是太多了,这里只放一个例子:

例5

其中

是给定的正整数,且

(1) 求

最小值的最小值;

(2) 在

的条件下,求
最小值的最小值。

这个例子稍微变形一下就能得到很多有用的结论。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值