目标检测网络(Faster RCNN、SSD、YOLO v2&v3等)中,均有先验框的说法,Faster RCNN中称之为anchor(锚点),SSD称之为prior bounding box(先验框),实际上是一个概念。Anchor设置的合理与否,极大的影响着最终模型检测性能的好坏。
1. 什么是Anchor?
一句话概括——提前在图像上预设好的不同大小,不同长宽比的框,先验框示意如下:
2. 为什么引入Anocher?
使得模型更容易学习。
目标检测中模型不仅需要学习目标的类别,更需要学习到目标的位置和大小,这不是一个简单的任务。举个简单的例子。
YOLOv1是较早的one-stage目标检测方法(YOLOv1没有设计Anocher),它最后采用全连接层直接对边界框进行预测,由于各个图

本文介绍了目标检测网络中的Anchor(先验框)概念,包括其在YOLO中的作用和重要性。解释了为何引入Anchor以帮助模型更好地学习目标类别、位置和大小。讨论了不同尺寸和长宽比的Anchor提高交并比(IoU)的原因,并探讨了Anchor尺寸的选择方法,如人为经验、k-means聚类和作为超参数学习。
最低0.47元/天 解锁文章
1496

被折叠的 条评论
为什么被折叠?



