用matlab画旋转抛物面_用MATLAB画出球面x^2+y^2+z^2=8与旋转抛物面x^2+y^2=2z的交线

对z=x^2+y^2微分得dz=2xdx+2ydy,所以旋转抛物面z=x^2+y^2在点

由热心网友提供的答案1:

求出相交面是x^2+y^2=4所以旋转抛物面在交面上方,圆锥面在交面下方.用极坐标:V=

不知你是光要画图呢?还是要进行计算。他们的交线就是位于z=2的平面上半径为2的一个圆,给你花了一个,你看看吧:clear all;clc;zz=@(x,y)(x.^2+y.^2)/2;ezsurf(zz,[-3,3,-3,3]);hold on;[x0,y0,z0]=sphere(60);r=2*sqrt(2);X=r*x0;Y=r*y0;Z=r*z0;surf(X,Y,Z);axis([-5,5,-5,5,-5,5]);axis equal;hidden off;%-----------------------------------------t=0:pi/100:2*pi;rr=2;x=rr*cos(t);y=rr*sin(t);z=2*ones(1,length(t));plot3(x,y,z,'r','linewidth',10);grid on;

如图所示:

扩展阅读,根据您访问的内容系统为您准备了以下扩展内容,希望对您有帮助。

求球面x^2+y^2+z^2=6与抛物面z=x^2+y^2的交线在点(1,1,2)处的切线方程

球面在(1,1,2)的法向量:m=(1,1,2)

抛物面在(1,1,2)的法向量:n=(1,-2,-4)

因为切向量与两个法向量都垂直,所以

切向量t平行于mXn=(0,-6,3),取t=(0,2,-1)

所以切线方程为

(x-1)/0=(y-1)/2=(z-2)/(-1)

用二重积分求球面x^2+y^2+z^2=2a^2和抛物面x^2+y^2=2az(a>0)所围成公共部分的体积?

解:∵解方程组x²+y²+z²=2a²与x²+y²=2az,得x²+y²=2(√3-1)a²

∴所求体积在xy平面上的投影区域是D:x²+y²=2(√3-1)a²

故 所求体积=∫∫[√(2a²-x²-y²)-(x²+y²)/(2a)]dxdy

=∫<0,2π>dθ∫<0,√(2√3-2)a>[√(2a²-r²)-r²/(2a)]rdr (应用极坐标变换)

=π∫<0,√(2√3-2)a>[√(2a²-r²)-r²/(2a)]d(r²)

=π[(-2/3)(2a²-r²)^(3/2)-r^4/(4a)]│<0,√(2√3-2)a>

=π[(-2/3)(√3-1)³a³-2(2-√3)a³-(-2/3)*2√2a³]

=(8/3+4√2/3-2√3)πa³

有几道题 在线求 求由抛物面x^2+y^2=z和锥面z=2-√x^2+y^2所围几何体的体积

dz / dx = grad (g_x) / grad (g_z)

dz / dy = grad (g_y) / grad (g_z)

grad (g_x)是g对x 的偏倒。其他同理。

x^2 + y^2 + z^2 == 16 && x^2 + y ^2 + z == 16

==> z == 0 || z== 1. 由面之外可知 z <=0。从而可知,要求的面为

x^2 + y^2 + z^2 == 16 && z <=0, 为半径为4的半球面。面积为

4/3 Pi r^3 / 2= 4/3*Pi * 32

抛物面x^2+y^2=z和锥面z=2-√x^2+y^2交线为 x^2 + y^2 = 1.

体积为在x^2 + y^2 =1 区域内计算二重积分 ((x^2+y^2) - (2-√x^2+y^2)) 的绝对值。用极座标化为

| Int \theta Int (r^2 - 2r) | , \theta 从0到2Pi,r 从0 到 1, Int是积分符号。答案很容易得到为,

|2Pi (1/3 - 2)| = 10/3 Pi.

  • 1
    点赞
  • 3
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
评论

打赏作者

13167668389

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值