质点运动学


前言

\quad 质点运动学以物体的质点模型为研究对象,讨论物体在空间中的的位置、速度和加速度随时间的变化情况。它只讨论物体的运动状态,而不涉及运动的产生和运动状态发生变化的原因。在运动学中,物体的运动状态是由位置矢量(运动方程)和速度描述的,而速度的变化则用加速度描述。本文通过速度、加速度等概念的建立,加深对运动的瞬时性、矢量性和相对性的认识,微积分在运动学中的应用十分广泛。由运动方程通过求导可得到速度以及加速度。反之,由质点运动的加速度(或速度)与时间的关系以及初始条件通过积分可求得质点的速度或位置。本文通过对直线运动、抛体运动和圆周运动的讨论,加深对各运动量的认识。


1.1质点运动的描述

1.1.1参照系 坐标系 质点

\quad 研究物体运动时被选作参照物的物体,称为参照系。当描述一个物体的运动时,必须指明是相对于哪个参照系。
\quad 为了定量地描述物体相对于参照系的运动,需要在参照系上建立适当的坐标系。所谓坐标系就是固定在参照物上的一组坐标轴和用来确定物体位置的一组坐标。常用的坐标系有直角坐标系、极坐标系、球坐标系和柱坐标系。
\quad 任何物体都有一定的大小和形状,当物体转动或物体有形变时,物体的大小和形状对运动的影响是重要的,但在有些问题中,可以把物体当作质点来处理。所谓质点,是指只有质量而没有大小、形状和结构的点。例如,当研究地球的公转时就可以把它当作质点,而当研究地球的自转时就必须考虑它的大小和形状。一个物体是否可以看成质点,应根据具体问题而定。

1.1.2 位置矢量 位移

\quad 在直角坐标系中,为确定一个运动质点P在任意时刻t所在位置,可以用三个坐标xyz来表示,当质点的位置随时间变化时,xyz都是时间t的函数,即
x = x ( t ) , y = y ( t ) , z = z ( t ) ( 1.1 − 1 ) x=x(t),y=y(t),z=z(t)\qquad(1.1-1) x=x(t),y=y(t),z=z(t)(1.11)
确定一个质点的位置,也可以用从原点O到P点的有向线段 O P → \overrightarrow{OP} OP 来表示。 O P → \overrightarrow{OP} OP 称为质点的位置矢量(位矢),又称为矢径,常用r表示,如图1-2所示。
图1-2
图 1 − 2 直 角 坐 标 系 图1-2 直角坐标系 12

在直角坐标系中位矢r可以表示
r = r ( t ) = x ( t ) i + y ( t ) j + z ( t ) k ( 1.1 − 2 ) r=r(t)=x(t)i+y(t)j+z(t)k\qquad(1.1-2) r=r(t)=x(t)i+y(t)j+z(t)k(1.12)
其中,ijk是坐标轴xyz三个方向的单位矢量。
\quad 位矢r的大小
r = ∣ r ∣ = x 2 + y 2 + z 2 r=|r|=\sqrt []{x^2+y^2+z^2} r=r=x2+y2+z2
表示质点离坐标原点的距离,而位矢r的方向可用其方向余弦表示,即
c o s α = x r , c o s β = y r , c o s γ = z r cos\alpha=\frac {x} {r},cos\beta=\frac {y} {r},cos\gamma=\frac {z} {r} cosα=rx,cosβ=ry,cosγ=rz
(1.1-1)式或者(1.1-2)式称为质点的运动方程。如果知道了运动方程,质点的运动就完全确定了。根据具体问题的条件,求解质点的运动方程是力学的基本任务之一。
\quad 质点的运动过程中,在空间所经历的路径称为轨道。从(1.1-1)式中消去时间t,就可以得到质点的轨道方程,所以(1.1-1)式也称为轨道的参数方程
\quad 设质点沿某轨道运动,在时刻t,质点的位置在轨道的A处,在时刻 t + Δ t t+\Delta t t+Δt,它在轨道的B处(图1-3)。质点在A、B两处的位置矢量分别为r和 r ′ r^{'} r。在时间间隔 Δ t \Delta t Δt内,质点位置发生了变化,质点位置的变化可以用有向线段 A B → \overrightarrow{AB} AB 来表示。从图1-3可以看出,有向线段 A B → \overrightarrow{AB} AB 就是矢径r的增量 Δ r \Delta r Δr,即
Δ r = r ′ − r ( 1.1 − 3 ) \Delta r=r^{'}-r\qquad(1.1-3) Δr=rr(1.13)
Δ r \Delta r Δr称为运动质点在时间间隔 Δ t \Delta t Δt内的位移。位移也是矢量,其方向表明了B点相对于A点的方位,位移的数值| Δ r \Delta r Δr|表明了B点与A点之间的直线距离。在 Δ t \Delta t Δt时间内质点沿轨道(图1-3)所示曲线从A点运动到B点,它经过的路径长度,称为路程,用 Δ s \Delta s Δs表示。
在这里插入图片描述
图 1 − 3 位 移 矢 量 图1-3 位移矢量 13

\quad 应该注意的,路程与位移是两个不同的概念。首先,路程是标量,位移是矢量;其次,路程的长度与位移的大小一般不相等,只有在时间 Δ t \Delta t Δt趋近于零时,才看作相等。在国际单位制中,位置矢量、位移和路程的常用单位是米(m)。

1.1.3 速度

如图1-3所示,设在时刻t,质点的位置在轨道的A点处,在时刻t+ Δ t \Delta t Δt,它运动到轨道的B点处,则该运动质点在t+ Δ t \Delta t Δt这段时间内的位移 Δ r \Delta r Δr Δ t \Delta t Δt之比,称为质点在 Δ t \Delta t Δt时间内的平均速度
v ‾ = Δ r Δ t ( 1.1 − 4 ) \overline{v}=\frac{\Delta r}{\Delta t}\qquad(1.1-4) v=ΔtΔr(1.14)
平均速度只能粗略地反映在 Δ t \Delta t Δt这段时间内质点位置矢量的平均变化率,要精确地反映质点在某时刻的运动,必须把时间间隔 Δ t \Delta t Δt取得极小, Δ t \Delta t Δt越小,平均速度对运动的描述越精确。当 Δ t → 0 \Delta t \to0 Δt0时的平均速度所趋向的极限称为质点在某一时刻t的瞬时速度,简称速度
v = lim ⁡ Δ t → 0 Δ r Δ t = d r d t ( 1.1 − 5 ) v=\lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} =\frac{dr}{dt}\quad(1.1-5) v=Δt0limΔtΔr=dtdr(1.15)
由图1-5可以看出,当质点沿着某轨道从A点向B点运动时,位移以及平均速度 v ‾ \overline{v} v沿割线的方向。当 Δ t → 0 \Delta t \to0 Δt0时,割线趋向于曲线在A点处的切线。因此,质点的速度方向沿着轨道上质点所在位置的切线方向。
\quad 直角坐标系中,瞬时速度可以表示成
v = v x i + v y j + v z k ( 1.1 − 6 ) v=v_xi+v_yj+v_zk\quad(1.1-6) v=vxi+vyj+vzk(1.16)
其中速度三个分量分别是
v x = d x d t , v y = d y d t , v z = d z d t ( 1.1 − 7 ) v_x=\frac{dx}{dt},v_y=\frac{dy}{dt},v_z=\frac{dz}{dt}\quad(1.1-7) vx=dtdx,vy=dtdy,vz=dtdz(1.17)
瞬时速度的大小称为瞬时速率,简称速率,用字母v表示,其数值为
v = ∣ v ∣ = v x 2 + v y 2 + v z 2 ( 1.1 − 8 ) v=|v|=\sqrt{v_x^2+v_y^2+v_z^2}\quad(1.1-8) v=v=vx2+vy2+vz2 (1.18)
因为 Δ t → 0 \Delta t\to 0 Δt0时,位移的大小 ∣ Δ r ∣ |\Delta r| Δr可以认为与路程 Δ s \Delta s Δs相等,因此,瞬时速率也等于 Δ t → 0 \Delta t \to 0 Δt0时路程与时间间隔之比,
v = lim ⁡ Δ t → 0 Δ s Δ t = d s d t ( 1.1 − 9 ) v=\lim_{\Delta t\to0}{\frac{\Delta s}{\Delta t}}=\frac{ds}{dt}\quad(1.1-9) v=Δt0limΔtΔs=dtds(1.19)
在国际单位制中,速度、速率的常用单位时米/秒(m/s)。

在这里插入图片描述 图 1 − 5 质 点 速 度 的 方 向 图1-5 质点速度的方向 15

1.1.4 加速度

\quad 一般来说,运动质点速度的大小和方向都随时间而变化,设在时刻t和时刻t+ Δ t \Delta t Δt,质点的位置分别在A点和B点,速度分别为v和 v ′ v' v(图1-6)。在 Δ t \Delta t Δt期间,质点速度的变化是 Δ v \Delta v Δv= v ′ v' v-v, Δ v \Delta v Δv Δ t \Delta t Δt之比称为运动质点在 Δ t \Delta t Δt时间内的平均加速度 a ‾ \overline{a} a,即
a ‾ = Δ v Δ t ( 1.1 − 10 ) \overline{a}=\frac{\Delta v}{\Delta t}\quad(1.1-10) a=ΔtΔv(1.110)
在这里插入图片描述
图 1 − 6 曲 线 运 动 中 的 速 度 增 量 图1-6 曲线运动中的速度增量 16线
平均加速度只反映 Δ t \Delta t Δt时间内质点速度的平均变化率。当 Δ t → 0 \Delta t\to 0 Δt0时平均加速度的极限称为质点在时刻t的瞬时加速度,简称加速度,即
a = lim ⁡ Δ t → 0 Δ v Δ t = d v d t = d 2 r d t 2 ( 1.1 − 11 ) a=\lim_{\Delta t\to0}{\frac{\Delta v}{\Delta t}}=\frac{dv}{dt}=\frac{d^2r}{dt^2}\quad(1.1-11) a=Δt0limΔtΔv=dtdv=dt2d2r

  • 6
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高达十几个

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值