数(2)
之前参加了数学大观园群里发起的读书活动,我想,那时,我更多地是把它当作一项读书的激励措施吧,每日打卡,按要求逐渐完成,尤其是那段时间正处于疫情的高峰阶段,待着有些惶恐不安,决意以读攻毒,且,这本书买来这么久,光看着里面艰深的理论,就足以让我望而却步了,有这样的活动,会给自己形成一种束缚,亦是一种对自己的承诺。尽管如此,共读打卡也是三天打鱼两天晒网,写下的记录不多。
作为一个非科班出身的数学老师,且解题素养也未抵达一个相当的程度,在很多时候的教学是很困惑的,而这样的困惑,我常常不知道其他老师是否跟我一样也有,特别是教低段的数学,如果高段的数学还可以用到我能回忆起来的各种解题窍门的话,低段数学的教学就显得很神秘很混沌了。因为有很多在我们看来理所当然的简单的常识,其实在数学发展的过程中,经历了颇为漫长的历史与艰辛的过程,而这个过程,如果没有教师深谙其道的引导,低年级的小朋友们也是在艰辛地经历着的吧。
有时候我们不得不意识到,我们强加给小朋友们的很多学法算法,重复性的语言表述,可能因为只符合我们成人的逻辑违背孩子的逻辑而阻碍了他们学习数学的进程,在通常意识到这一点的时候,在教学时我就会因为心智不坚而感到挫败,我常常怀疑自己,这样教是对的吗?
前天又决意翻开这本书,有时候阅读并不是神奇的,能够刚好解决你心存的疑惑,但是它可能会以清晰的归类的方法,来给你安放某些疑惑,我们教“数”,可能还未可分化为它的四个角色来讲述,未可将直观算术,算法算术整理好清晰的脉络,未可将结构化的材料使用与韦恩图做一次本质的比对,我想,阅读,可能真的是防止庸人自扰的最快捷的途径。遂,将今日的阅读记录如下,是不同于前日的数的概念的划分的阅读记录,而是数的概念的几个发展阶段:直观的运算,算法的运算,代数的运算,整体的组织(域的概念),且因为篇幅较长,将分成好几天完成。
今天的阅读重点是“直观算术教学法VS韦恩图”。
之前的阅读记录强调了计数的数在教学中应当优先考虑,直观算术的教学法都试图将计数过程系统化(加法:继续数数;减法:往回数数;乘法:两个一数,三个一数)
而韦恩图的一个很大缺点就是忽视了结构化的必要性,它的出现妨碍了对系统计数的学习,在做加法时,它将学生引向重新数数而不是继续数数,且没有教减法的方法。
系统计数要用到的材料必须满足一个要求,就是它的“齐性”,算盘上的石子,小球,算珠都被认为是等价的。强调材料的齐性,应当看作集合论观点的推论,因为集合的一个元素就是一个元素,别无它意。
而今天大多数算术书却尽可能在表示集合的非齐性,如韦恩图,它是一个大杂烩,包括各种不同的字母,数,星形,十字形与其他无意义的图形,它的想法是,在同一个韦恩图中不允许两次出现同一符号,因为那就是表示同一元素,而不是不同的元素。这种想法是错误的,因为它先假定了韦恩图是一个无意义的符号集合,而不是儿童必须计数的图像描述。有些教科书甚至想让儿童相信,一个集合的元素数目只有在所有元素都不相同的情况下才能确定。儿童当然也应该用非齐性材料来学习,但这并不适宜于训练计算技能。
关于材料的结构化,可区分为逻辑的和直观的两种观点,数系是用位值逻辑地构造而成,在测量及更具体的货币体系中有相似的结构。在算盘上能模仿出这种位值结构,一个算珠移到左边一列,即是原来的十倍值,但有的算盘就只是一个直观的结构化材料,每一个算珠都表示同一个单位。
对于比较小的数的运算,总是借助于具体的对象的集合,特别是手指,它是要给常用的工具。而近来的趋势是具体有形的对象被在纸上的图形所代替,这种做法如果符合常识与想象,倒是合理的,可奇怪的是,很多好方法不采用,却由韦恩图控制这一领域。应该由自然的组合来表示集合,例如木块搭成的高楼,书架上的书,长凳上的儿童,并在这种背景下进行数字的加和减。限于纸上的算术教学材料有以下优点:1. 易于检查学生的个别活动。2.给予无经验教师一个完全设计好的,可具体操作的教学法。
许多现代教学材料都被有意识地建立了结构。表示数的基本原理是,每个单位具有相同的形状和大小,再适当地排列,就可以组成更大的对象,比如单位立方体的教学材料,按维数系统排列,10个一列,100个一面,1000个又排成一个大的立方体,以此类推。上述材料偏爱系统的计数和结构化的加减法,而它们最终应导致算法的计算。据说儿童接触直观教学材料时间太长,会妨碍算法算术的过渡,当然用手指计数确是存在这样的危险,但用现代的教学材料不会形成这一弊端,应该让儿童玩直观教学材料,只要能熟练掌握,材料愈复杂,儿童获得的知识也愈多。(逻辑狗就有这样的功效,亲鉴)
矩形模式应广泛应用于乘法的直观教学。但在传统算术中,它虽未被忽视也未被推广,因为它在算法计算中用处不大。为此,教学法专家相信还是计数方式好,只是计数的每一步要大于1.系统计数确实在理论与实践两方面都是一个有用的工具,然而,有些现代算术书却完全无视这一点。
系统计数就是归纳地构造乘积,例如,将3x6看作6+2x6,这是乘法表的训练原理,用加法归纳地构造出乘积。
乘法化归为加法是获得算术技能的最有效方法,但是不应该忽视乘法的矩形模式,可以训练学生从矩形模式中看出乘积,还可以结合使用前面所提到的结构化材料。
可以运用矩形模式的实际应用有很多。比如最常见的应用是形成偶对集,已知两个有限集,A有a个元素,B有b个元素,于是偶对集(A,B)就有ab个元素。如5个男孩4个女孩可以组成多少男孩女孩对?又比如学校的时间可以分成每星期的天数与每天上课的节数,于是就形成每个星期有多少节课的模式。
最引人注意的是将一个矩形按宽分成5条,按高分成4条(不必相等),于是生成20个子矩阵。如果子区间对应于单位,就可用矩形模式计算面积。一个无结构的矩形,可以进行构造,使之结构化。
偶对集的势(数量)等于因子集的势的乘积,但这不是我们要讨论的问题,唯一重要的问题是偶对集的结构必须由学生来创造。传统算术中只用矩形证明面积公式,接着就忘记了矩形的结构化。这一模型在教学中应该充分运用,它是集合论概念的一项极有价值的应用。
一旦利用矩形模型来直观解释自然数的乘法,那么分数乘法马上就变成最直观的运算了。单位正方形可以用5x4个边长为1/5和1/4的矩形来填满,这样一个矩形是正方形的1/20,于是1/4·1/5=1/20,同样可以直观得得出2/5·3/4=6/20.(赞,计数系统的结构化)
以矩形作为乘积的直观形象应当进一步发展,而不仅用边长与矩形面积,也不仅用自然数因子为例,这是积分概念中的要求,而实际在更为初级的阶段就可以做些尝试,比如可将人-小时,千克-米,千瓦-小时和瓦映射成单位正方形,用这些标准测得的量作为矩形,例如将100人一小时看作是5人和20小时的矩形或4人25小时的矩形等等。
矩形模式最重要的应用是时间乘以速度得到路程(或体积乘以密度得到质量等)。事实上,时间并不比路程长更为直观,而速度,密度等也只是导出量,必须将路程长除以时间,质量除以体积才能得到它们。因此人们应当先有对不同速度的体验,估计它们的相互关系,首先是“多”与“少”,然后是“加倍”和“一半”,最后才会找出速度的精确测量。这一过程可在重量(质量)与体积上再现,也可在许多其他的量偶上再现。从这些例子中,将一般原理具体化,最终形成一个明确的公式。当然也可以将速度和类似量的计算规则直接告诉学生,但这种方法总是不很成功的。
在形成速度概念之前要经历一段漫长的过程,在算术教学的早期阶段,人们应该用逻辑上相似但更为直观的概念,如单价。但一旦出现是速度概念,就应得出所有直观表示,应该展现作为时间与速度之积的路流程矩形,也应容许可变速度,至少要防止学生认为速度是常数。
而在竭力提倡直观模型之后,必须谨防任何夸大直观的做法。乘法的矩阵模型关于因子是对称的。而除法中就有不对称性,由于除法本身是一种高度直观的运算。“5人分20只面包,每人得多少?”与“分20只面包,使每人得4只,可分给多少人?”两者从直观上看,就是截然不同的事情,前者20只面包由5人分称为分配除法,后者20只面包除以4只面包是比的除法。要求学生用不同的方法解两个问题,特别是两种情况下的长除法是不同的。但是数学的特征就是把同构的步骤归纳成抽象模式,矩形模式就是通用于乘除法的模式。学生应学会以矩形模式解释具体数的乘法,数量数可以,测量数也可以。使用模型时,建议注意因子的对称性,于是就不必再按照哪个因子作除数而区分两种除法了,应理解它们具有共同的模型,所以一种模型就足够了,如果某些教学法专家不是从量的基础理论出发来考虑出发,那么两种出发的问题就会一代一代死灰复燃。
今日的阅读分享就到这里,以后的阅读将讨论数轴,坐标,算子,实体,函数,杠杆。。。等等,从直观方法到算法化到推理化,数的概念的发展着实也是一件有意思的可追溯的过程。