课堂小结与课后作业
Class Closing and Homework
CONTENT
数据插值、拟合背景知识
Background Knowledge of Data Interpolation
数据插值、拟合实例导入
Import Examples of Data Interpolation
数据插值、拟合基本概念
Basic Concepts of Data Interpolation
数据插值、拟合例题分析
Example Analysis of Data Interpolation
01
数据插值、拟合背景知识
Background Knowledge of Data Interpolation
PART ONE
1 数据插值、拟合的背景知识
给出函数关系式的方法,因观测数据与要求的不同而异,通常可以采用两种方法:
拟合
插值
简单的插值与拟合可以通过手工计算而得出,但是复杂的计算只能求助于计算机。
1 数据插值、拟合的背景知识
02
数据插值、拟合实例导入
Import Examples of Data Interpolation
PART TWO
例1? 已知一些气象学家测量得到的气象资料,它们分别有南半球地区按不同纬度、不同月份的平均气旋数值,如下表1所示。
2 数据插值、拟合实例引入
1
2
3
4
5
6
7
8
9
10
11
12
5
2.4
1.6
2.4
3.2
1.0
0.5
0.4
0.2
0.5
0.8
2.4
3.6
15
18.7
21.4
16.2
9.2
2.8
1.7
1.4
2.4
5.8
9.2
10.3
16
25
20.8
18.5
18.2
16.5
12.9
10.1
8.3
11.2
12.5
21.1
23.9
25.5
35
22.1
20.1
20.5
25.1
29.2
32.6
33.0
31.0
28.6
32.0
28.1
25.6
45
37.3
28.8
27.8
37.2
40.3
41.7
46.2
39.9
35.9
40.3
38.2
43.4
55
48.2
36.6
35.5
40.0
37.6
35.4
35.0
34.7
35.7
39.5
40.0
41.9
65
25.6
24.2
25.2
24.6
21.1
22.2
20.2
21.2
22.6
28.5
25.3
24.3
75
5.3
5.3
5.4
4.9
4.9
7.1
5.3
7.3
7.0
8.6
6.3
6.6
85
0.3
0.0
0.0
0.3
0.0
0.0
0.1
0.2
0.3
0.0
0.1
0.3
表1 南半球地区按不同纬度、不同月份的平均气旋数值
通过Matlab软件,使用二维三次插值方法,可得到不同月份按不同纬度变化的气旋值,并作出可视化图形,如下图所示。
2 数据插值、拟合实例引入
图1 南半球气旋可视化图形
03
数据插值、拟合基本概念
Basic Concepts of Data Interpolation
PART THREE
3 数据插值、拟合的基本概念
(1) 一维插值
在Matlab中,一维的线性插值可使用 interp1 来实现,函数 interp1 调用格式为
yi=interp1(x,y,xi)
此外,函数 interp1 还有如下两种形式
yi=interp1(y,xi)
其中 x=1: N,其中N为向量 y 的长度
yi=interp1(x,y,xi, ' method ')
表示在插值向量 xi 处的函数值
表示数据点
在Matlab中,二维的线性插值函数调用格式为
zi=interp2(x,y,z,xi,yi, ' method ')
其中 x 与 y 是横纵坐标上的坐标点。
interp1( )
interp2( )
interpN( )
3 数据插值、拟合的基本概念
(2) 高维插值
3 数据插值、拟合的基本概念
(2) 高维插值——method指定插值方法
zi=interp2(x,y,z,xi,yi, ' method ')
yi=interp1(x,y,xi, ' method ')
在Matlab中,使用 polyfit( ) 函数进行最小二乘法曲线拟合。polyfit( ) 函数的调用格式为
p=polyfit(x,y,n)
[p,s]= polyfit(x,y,n)
拟合生成多项式系数向量
3 数据插值、拟合的基本概念
(3) 最小二乘法的曲线拟合
误差预测结果
04
数据插值、拟合例题分析
Example Analysis of Data Interpolation
PART FOUR
4 数据插值、拟合例题分析
(1) 一维插值的应用
例2 在一天24小时内,从零点开始每间隔2小