matlab 气旋,1数据插值、拟合在MATLAB中的应用论述.pptx

课堂小结与课后作业

Class Closing and Homework

CONTENT

数据插值、拟合背景知识

Background Knowledge of Data Interpolation

数据插值、拟合实例导入

Import Examples of Data Interpolation

数据插值、拟合基本概念

Basic Concepts of Data Interpolation

数据插值、拟合例题分析

Example Analysis of Data Interpolation

01

数据插值、拟合背景知识

Background Knowledge of Data Interpolation

PART ONE

1 数据插值、拟合的背景知识

给出函数关系式的方法,因观测数据与要求的不同而异,通常可以采用两种方法:

拟合

插值

简单的插值与拟合可以通过手工计算而得出,但是复杂的计算只能求助于计算机。

1 数据插值、拟合的背景知识

02

数据插值、拟合实例导入

Import Examples of Data Interpolation

PART TWO

例1? 已知一些气象学家测量得到的气象资料,它们分别有南半球地区按不同纬度、不同月份的平均气旋数值,如下表1所示。

2 数据插值、拟合实例引入

1

2

3

4

5

6

7

8

9

10

11

12

5

2.4

1.6

2.4

3.2

1.0

0.5

0.4

0.2

0.5

0.8

2.4

3.6

15

18.7

21.4

16.2

9.2

2.8

1.7

1.4

2.4

5.8

9.2

10.3

16

25

20.8

18.5

18.2

16.5

12.9

10.1

8.3

11.2

12.5

21.1

23.9

25.5

35

22.1

20.1

20.5

25.1

29.2

32.6

33.0

31.0

28.6

32.0

28.1

25.6

45

37.3

28.8

27.8

37.2

40.3

41.7

46.2

39.9

35.9

40.3

38.2

43.4

55

48.2

36.6

35.5

40.0

37.6

35.4

35.0

34.7

35.7

39.5

40.0

41.9

65

25.6

24.2

25.2

24.6

21.1

22.2

20.2

21.2

22.6

28.5

25.3

24.3

75

5.3

5.3

5.4

4.9

4.9

7.1

5.3

7.3

7.0

8.6

6.3

6.6

85

0.3

0.0

0.0

0.3

0.0

0.0

0.1

0.2

0.3

0.0

0.1

0.3

表1 南半球地区按不同纬度、不同月份的平均气旋数值

通过Matlab软件,使用二维三次插值方法,可得到不同月份按不同纬度变化的气旋值,并作出可视化图形,如下图所示。

2 数据插值、拟合实例引入

图1 南半球气旋可视化图形

03

数据插值、拟合基本概念

Basic Concepts of Data Interpolation

PART THREE

3 数据插值、拟合的基本概念

(1) 一维插值

在Matlab中,一维的线性插值可使用 interp1 来实现,函数 interp1 调用格式为

yi=interp1(x,y,xi)

此外,函数 interp1 还有如下两种形式

yi=interp1(y,xi)

其中 x=1: N,其中N为向量 y 的长度

yi=interp1(x,y,xi, ' method ')

表示在插值向量 xi 处的函数值

表示数据点

在Matlab中,二维的线性插值函数调用格式为

zi=interp2(x,y,z,xi,yi, ' method ')

其中 x 与 y 是横纵坐标上的坐标点。

interp1( )

interp2( )

interpN( )

3 数据插值、拟合的基本概念

(2) 高维插值

3 数据插值、拟合的基本概念

(2) 高维插值——method指定插值方法

zi=interp2(x,y,z,xi,yi, ' method ')

yi=interp1(x,y,xi, ' method ')

在Matlab中,使用 polyfit( ) 函数进行最小二乘法曲线拟合。polyfit( ) 函数的调用格式为

p=polyfit(x,y,n)

[p,s]= polyfit(x,y,n)

拟合生成多项式系数向量

3 数据插值、拟合的基本概念

(3) 最小二乘法的曲线拟合

误差预测结果

04

数据插值、拟合例题分析

Example Analysis of Data Interpolation

PART FOUR

4 数据插值、拟合例题分析

(1) 一维插值的应用

例2 在一天24小时内,从零点开始每间隔2小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值