这是一种做法。这使用扩展的欧几里德算法来找到abs(x)模2 62 sup>的逆,并且最后它将答案扩展到逆模2 64 sup>并应用必要时改变标志:
public static long longInverse(long x) {
if (x % 2 == 0) { throw new RuntimeException("must be odd"); }
long power = 1L << 62;
long a = Math.abs(x);
long b = power;
long sign = (x < 0) ? -1 : 1;
long c1 = 1;
long d1 = 0;
long c2 = 0;
long d2 = 1;
// Loop invariants:
// c1 * abs(x) + d1 * 2^62 = a
// c2 * abs(x) + d2 * 2^62 = b
while (b > 0) {
long q = a / b;
long r = a % b;
// r = a - qb.
long c3 = c1 - q*c2;
long d3 = d1 - q*d2;
// Now c3 * abs(x) + d3 * 2^62 = r, with 0 <= r < b.
c1 = c2;
d1 = d2;
c2 = c3;
d2 = d3;
a = b;
b = r;
}
if (a != 1) { throw new RuntimeException("gcd not 1 !"); }
// Extend from modulo 2^62 to modulo 2^64, and incorporate sign change
// if necessary.
for (int i = 0; i < 4; ++i) {
long possinv = sign * (c1 + (i * power));
if (possinv * x == 1L) { return possinv; }
}
throw new RuntimeException("failed");
}我发现使用2 62 sup>而不是2 63 sup>更容易,主要是因为它避免了负数问题:2 63 sup>作为Java long是负。