最小相位滤波器 matlab,基于MATLAB最小相位数字滤波器的设计方法研究

本文介绍了数字信号处理中FIR滤波器的基础原理,特别关注了最小相位滤波器的设计方法。重点阐述了如何在MATLAB环境中利用共轭倒序技术,确保滤波器的零点位于单位圆内,从而实现无条件稳定的滤波效果。此外,还探讨了多种滤波器实现方式,包括专用硬件设计、通用计算机加速和专用DSP芯片的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0引言在数字信号处理中,数字滤波器占有极其重要的地位,具有滤波精度高、稳定性好、灵活性强等优点。数字滤波器是由数字乘法器、加法器和延时单元组成的一种装置,它是一个离散时间系统,其基本工作原理是利用离散系统特性对系统输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量通过,抑制无用的信号分量输出。数字滤波器以冲激响应延续长度,可分为两类:FIR滤波器(有限冲激响应滤波器)和IIR滤波器(无限冲激响应滤波器)。最小相位数字滤波器是一种可逆滤波器,在电子信息及许多仪器中被广泛应用。随着电子计算机技术和大规模集成电路的发展,数字滤波器可用大规模集成数字硬件实时实现,也可用计算机软件实现。本文主要介绍如何在MATLAB环境下设计和实现FIR最小相位数字滤波器。1FIR滤波器基本原理[1]设h(n)(n=0,1,2,…,n-1)为滤波器的冲激响应,输入信号为x(n),则滤波器就是要实现下列差分方程:y(n)=n-1k=0h(k)x(n-k)(1)式(1)就是滤波器的差分方程。滤波器的最主要的特点是没有反馈回路,因此它是无条件稳定系统,它的单位脉冲响应h(n)是一个有限长序列。由上面的方程可知,滤波算法实际上是一种乘法累加运算,它不断地输入样本x(n),经延时(Z-1),做乘法累加,再输出滤波结果y(n),对式(1)进行变换,整理后可得滤波器的传递函数为:H(z)=n-1k=0Z-k(2)由式(2)可以得到FIR滤波器的结构如图1所示。图1FIR滤波器的结构2实现最小相位方法[2]若序列Z变换的所有零点都在Z平面的单位圆内,则称该序列为最小相位序列。若序列a={a0,a1,…,aM}为最小相位序列,记a的倒序序列为aR={aM,aM-1,…a0},则有共轭系数多项式:A*(z)=a0*+a1*z-1+…+aM*z-M(3)共轭反射多项式:-A*(z)=a0*+a1*z+…+aM*zM(4)共轭倒序多项式:AR(z)=aM*+aM-1*z-1+…+a0*z-M(5)它们的关系为:AR(z)=z-M-A(z)=z-MA*(z-1)(6)|A()|2=|A-()|2=|A*()|2=|AR()|2(7)式(6)说明,若A(z)的零点为z,则AR的零点为(1/zi*)。如果zi中某点在单位圆外,1/zi*就在单位圆内了。由式(7)可见,根据幅度谱不能区分序列a和aR。由于任何M阶多项式可分解成M个因子的乘积,即具有M个根,若将任意一因子(1-zi,z-1)共轭倒序为(-zi*+z-1),则可得到一新的多项式或新的序列,但其幅度谱不变。对于M个因子的乘积,总共可作2M次不同的组合,故总共有2M个新的序列,它们都具有相同的幅度谱。FIR滤波器的传递函数如果有零点在单位圆外,可以通过共轭倒序的办法把零点归一化到单位圆内,同时不影响幅度的变化。3FIR最小相位滤波器设计方法数字滤波器的实现方法一般有以下几种:(1)采用加法器、乘法器、延时器设计专用的滤波电路。(2)在通用计算机系统中加上专用的加速处理机设计实现。(3)用通用的可编程DSP芯片实现。(4)用专用的DSP芯片实现。在一些特殊的场合,要求的信号处理速度极高,用通用DSP芯片很难实现。这种芯片将相应的滤波算法在芯片内部用硬件实现,无需进行编程。(5)计算机辅助设计方法(MATLAB软件环境)实现[3]。计算机辅助设计方法是集电路理论、网络图论、数值分析、矩阵运算、元件建模、优化技术、高级计算机语言等多交叉学科于一身的新领域,它把计算机的快速、高精度、大存储容量、严格的逻辑判断和优良的数据处理能力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值