matlab 半正定规划,半定规划算法(Semi-Definite Programming Algorithm).ppt

初始点: 例子2: 化成半定规划的标准形式如下: 初始点: 谢 谢! SDPs的一个原始—对偶对的KKT最优性条件 (1) 若 满足式(1)中的前2个方程,则称其为一个原始—对偶对的可行点,若进一步 有 则称其为一个原始—对偶对的严格可行点。 对 记 是系统 (2) 2.3 中心路径 解,称集合 为中心路径。 对于每一个 都有唯一的最优解。 收敛于一个原始- 对偶对的一个最优解。 图示 2.4 搜索方向 一次迭代:假设 是一个严格可行迭代点。 选择 且设 从而确定 是中心路径上的点, 计算一个牛顿搜索方向 选择步长 满足 (#) 且满足 把 带入到 (#)中,在 处 解 变成下列线性系统 所以该系统没有解,作出一些修改则可求解 因为方程的个数大于未知数的个数 上述线性系统的解为; 参考以下文献: [1] C.Helmberg,F.Rendl,R.J.Vanderbei and H.Wolkwicz,An interior-point method for Semidefinite programming,SIAM Journal on Optimization,6(1996)342-361. 2.5 算法步骤(原始-对偶内点法的计算步骤总结如下): (1):给定误差容限 选取一个严格原始—对偶初始可行点 若 满足 则 即为 近似最优点,停止迭代。 (3):计算搜索方向 设 为一个原始—对偶对的严格可行点。 另设 (2): 若当前的迭代点 满足精度要求,停止迭代。否则,计算 解下列线性方程组 其中 (4):选取一个原始问题的步长 和一个对偶问题的步长 满足 另设 (5):转回第二步,直到求出某点满足精度要求为止。 下面给出原始—对偶可行内点中心路径跟踪算法的示意图 收敛性分析较为复杂,在这里将不做进一步讨论。 2.6 利用稀疏度 在实际实施中的重要特征是经常出现大规模半定规划问题: (1): 为 阶矩阵变量, 而且每一个都有 个实数变量; 例如, 亿。 (2): 原问题中有 个线性等式约束 和有 个 (3): 数据矩阵 是稀疏的。 如果在数据矩阵中,多数的元素为0,称此矩阵为稀疏的 由于矩阵在程序中常使用二维阵列表示,二维阵列的大小与使用的存储器空间成正比 ,如果多数的元素没有数据,则会造成存储器空间的浪费,为此,必须设计稀疏矩阵 的阵列储存方式,利用较少的存储器空间储存完整的矩阵数据。 二维数组 中有N个非零元素,若N<

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值