onnxsim-让导出的onnx模型更精简

当ONNX模型参数过多,不便查看时,可以使用onnxsim进行模型简化。首先通过pip安装onnx-simplifier,然后加载onnx模型并调用simplify方法进行简化,再保存处理后的模型。简化后的模型结构更清晰,便于理解和可视化。推荐使用Netron工具进行模型可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        用torch导出的模型有时候参数过多,不利于查看。查找资料onnxsim可以简化模型,让显示更加自然。

        如,reshap层的导出,红框中细节参数被显示出现。默认导出:

        使用onnxsim 可以让结构更加简洁,具体执行方式如下:

step1、安装onnxsim包

pip install onnx-simplifier

step2、加载onnx文件,simplify处理后重新保存,代码如下:

from onnxsim import simplify
onnx_model = onnx.load(output_path)  # load onnx model
model_simp, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simp, output_path)
print('finished exporting onnx')

step3、模型可视化查看,结果导出如下:

        是不是更精简了呢。可视化可使用Netron打开显示。

        更多Netron的使用方式可参考:Netron-模型结构可视化工具(支持tf, caffe, keras,mxnet,onnx,darknet)_alex1801的博客-CSDN博客

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jingbo1801

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值