devexpress.xtraeditors.xtraform 类型初始值设定_卷积核类型简介

本文深入浅出地介绍了卷积核的概念,包括1D、2D和3D卷积,转置卷积,可分离卷积,扩张/空洞卷积以及可变形卷积。通过直观的示例解释了卷积核如何影响图像特征提取,并强调了不同类型的卷积在参数效率和感受野扩大方面的作用。
摘要由CSDN通过智能技术生成

d608a4b3d5548ec7c10195c4b025c9d6.png
编译:McGL
公众号:PyVision

在一堆介绍卷积的帖子中,这篇特别之处在于很萌的示例配色,令人眼前一亮,当然直观也是很直观滴,保证了能在昏昏欲睡见周公子前看完。

https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37

直观介绍各种迷人的CNN层

一个简短的介绍

卷积使用“kernel”从输入图像中提取某些“特征”。kernel是一个矩阵,可在图像上滑动并与输入相乘,从而以某种我们期望的方式增强输出。看下面的GIF。

dbacb27b3f4f39adacea45ecf2293cd7.gif

上面的kernel可用于锐化图像。但是这个kernel有什么特别之处呢?考虑下图所示的两个输入图像。第一个图像,中心值为3 * 5 + 2 * -1 + 2 * -1 + 2 * -1 + 2 * -1 =7,值3增加到7。第二个图像,输出是1 * 5 + 2 * -1 + 2 * -1 + 2 * -1 + 2 * -1 = -3,值1减少到-3。显然,3和1之间的对比度增加到了7和-3,图像将更清晰锐利。

9fc33f3188275f2f2814d4ade397cad3.png

通过深层 CNN,我们无需再用手工设计的kernel来提取特征,而是可以直接学习这些可提取潜在特征的kernel值。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值