计算机控制g s 求d s,计算机控制

第一章

1 .计算机控制系统的结构和组成:

有控制对象,执行器,测量环节和数字调节器(包括多路开关,采样保持器,模-数转换器,数字计算机,数-模转换器和保持器)等组成。

2. 采样定理(也称shannon定理):

一个连续信号f(t),设其频带宽是有限的,最高频率Wmax;

如果在等间隔的点上进行连续采样,是采样后的离散信号能够包含原信号的所有信息。

采样频率必须满足Ws≥2Wmax,称之为采样定理。

3. 模-数转换器:

把离散的模拟信号y*(t)转换成时间上和幅值上均为离散的数字量y(KT)。

量化单位q=y*max-y*min/2的n次方-1≈y*max-y*min/2的n次方,

y*max,

y*min分别表示转换器输入的最大值和最小值,

n表示转换器的位数(转换器的精度取决于n)

有量化引起的误差称为量化误差E E=q/2

4.例题若y*max=10V,

y*min=0V,n=12,试求量化单位q和量化误差E

解:量化单位 q≈10V-0V/2的12次方≈2.44mA

量化误差 E≈q/2=1.22mA

5. 零阶保持器:

①响应的幅值为1,宽度为T,表明零阶保持器对采样的值既不放大,也不衰减,

另外,也说明零阶保持器只能不增不减地保持一个采样周期;

②特性:低通特性;相角滞后特性;

③传递函数: H0(s)=1-e的-TS次方/s

6.

计算机控制系统在给定输入或外界干扰下的过渡过程可能有4种情况:

①发散振荡②等幅振荡③衰减振荡④非周期震荡

第二章

7.差分方程的解法有:迭代法,古典法和变换法

8.迭代法:

例题已知差分方程y(KT)+y(KT-T)=r(kT)+2r(kT-2T)输入序列为r(kT)={k,k≥0时;0,k<0时,初始条件为y(0)=2,试用迭代法求解差分方程。

解:逐步以K=1,2,3,…,代入差分方程,则有

y(0)=2,y(T)=-1, y(2T)=3,y(3T)=2,y(4T)=6,…

可以得到任意kT时刻的输出序列y(kT)

9.①Z变换定义:

Y(Z)=∑(k=0~∞)y(kT)e的-kTs次方=∑∞k=0y(kT)Z的-k次方(Z=e的Ts次方)

把采样函数y*(t)变换成Y(z),Y

(z)称为y*(t)的Z变换,也有称作离散拉式变换或采样拉氏变换的。

记作Y(z)=Z[y*(t)]或Y(z)=Z[y(kt)]

②Z反变换定义:

由Y(z)求出相应的时间序列y(kt)或数值序列y(kt)称作Z反变换。

记作Z的-1次方[Y(z)]=y(kt)脉冲序列;Z的-1次方[Y(z)]=y(k)数值序列。

10.Z变换的性质和定理:

①线性性质

设Z[y(kT)]=Y(z),Z[x(kT)]=X(z),且a,b为常数,则有

Z[ay(kT)]=a Y(z), ,Z[bx(kT)]=bX(z)

Z[ay(kT)+ bx(kT)]= a Y(z)+ bX(z)

②滞后定理

Z[y(kT-nT)]=z的-n次方Y(z)

Z的-n次方代表滞后环节,表示把信号滞后n个采样周期

③超前定理

Z[y(kT+nT)]=z的n次方Y(z)-∑n-1j=0z的n-j次方y(jT)

Z的n次方代表超前环节,表示输出信号超前输入信号n个采样周期

④初值定理

设Z[y(kT)]= Y(z)则y(0)=limk→0y(kT)=limz→∞Y(z)

⑤终值定理

设Z[y(kT)]= Y(z)则y(∞)=limk→∞y(kT)=limz→1(Z-1)Y(z)

11.留数计算法(Z反变换)

①无重跟情况

y(kT)=∑n,i=1limz→pi[(z-pi)Y(z)z的k-1次方]

②有重跟情况

y(kT)=∑n-l,i=1limz→pi[(z-pi)Y(z)z的k-1次方]+limz→pj1/(l-1)!d的l-1次方/dz的l-1次方[(z-pj)的l次方Y(z)z的k-1次方]

12.例题:用留数法求Y(z)=0.6z/z的2次方-1.4z+0.4的Z变换

解:n=2,p1=1,p2=0.4

Y(kT)=limz→1(z-1)0.6z的k次方/z的2次方-1.4z+0.4+limz→0.4(z-0.4)0.6z的k次方/z的2次方-1.4z+0.4=1-0.4的k次方

13.用Z变换求解差分方程

例题:求解差分方程

Y(kT+2T)+4y(kT+T)+3y(kT)=0

Y(0)=0 y(T)=1

解:对差分方程作Z变换

Z的2平方Y(z)-z的2平方y(0)-zy(T)+4zY(z)-4zy(0)+3Y(z)=0代入初始条件得

Y(z)=z/z2+4z+3=0.5z/z+1-0.5z/z+3

Y(kT)=0.5(-1)的k次方-0.5(-3)的k次方

14.例题2:求解差分方程

Y(kT+2T)-4y(kT+T)+3y(kT)=﹠(kT)

Y(kT)=0,k≤0

﹠(kT)={1,k=0;0,k≠0

解,对差分方程作Z变换

Z[﹠(kT)]=1

Z2Y(z)-z2y(0)-zy(T)-4[zY(z)-zy(0)]+3Y(z)=-1

已知y(0)=0,以k=-1代入差分方程可得

Y(T)=0

以y(0),y(T)代入Z变换式,得

Y(z)=1/z2-4z+3=1/(z-3)(z-1)

Y(kT)=limz→3(z-3)zk-1/z2-4z+3+limz→1(z-1)zk-1/z2-4z+3=0.5(3)k-1-0.5(1)k-1

15.连续环节的离散化(留数法)

若G(s)已知,具有N个不同的极点,有l重极点(l=1,为单极点),

则G(s)=∑N,i=1[1/(l-1)!]dl-1/dsl-1[(s+si)lG(s)z/(z-esT)]∣s=-si

16.例题:已知G(s)=1/s2,求G(Z)

解:N=1,l=2,s1=0

G(Z)=1/(2-1)!d/ds{s2[1/s2]z/(z-esT)}∣s=0

=d/ds[z/(z-esT)]∣s=0

=-z(-esT)T/(z-esT)0∣s=0

=Tz/(z-1)2

17.线性离散系统的稳定判据

⑴朱利判据

A(Z)=anZn+an-1zn-1+…+a1z+an

1 an an-1 an-2 …a1 an

2 a0 a1 a2 …an-1 an

3cn-1 cn-2 … c1 c0

4c0 c1 … cn-2 cn-1

5dn-2 dn-3 … d0

6d0 d1 … dn-2 (列数=2n-3)

?{cn-1=anqn-a0q0=an2-a02

Cn-1=anan-1-a0a1

{dn-2=cn-1cn-1-c0c0=cn-12-c02

dn-3=cn-1cn-2-c0c1

⑵朱里判据A(Z)所有根都在范围园内的充要条件?{A(1)>0

(-1)nA(-1)>0

an>∣a0∣

an-1>∣c0∣

即奇数列>首端>末端

18.例题 :A(Z)=4Z4-4Z3+2Z-1

解 列表

2n-3=2×4-3=5列

1 4 -4 0 2 -1

2 -1 2 0 -4 4

3 15 -14 0 4 4 14 0 -14 15

5 209 -210 56

A(1)>0

(-1)4A(-1)>0

4>∣-1∣

15>∣4∣

209>∣56∣ ?系统稳定

19.劳斯判据

例题:设有线性离散系统,K=1,T=1S,试判断系统的稳定性

解 系统的闭环Z传递函数

Gc(Z)=0.368z+.0264/z2-z+0.632

特征方程z2-z+0.632=0

令z=1+w/1-w代入方程得

2.632w2+0.736w+0.632=0

建立劳斯表 w2 2.632 0.632

W1 0.736 0

W0 0.632

劳斯行列表的第一列各元素均为正,有劳斯盘踞可知系统稳定

20.⑴S平面的虚轴映射到Z平面是以圆点为圆心的单位圆内;

⑵S平面的左半平面映射到Z平面,是以圆点为圆心的单位圆内部分;

⑶S平面的右半平面映射到Z平面,是以圆点为圆心的单位圆外部分。

第三章

21.线性离散系统的Z传递矩阵

若{x(kT+T)=Fx(kT)+Gu(kT)

y(kT)=Cx(kT)+Du(kT)

对上式作Z变换的

{zX(z)-zx(0)=FX(z)+GU(z)

Y(z)=CX(z)+DU(z)

当 x(0)=0时

Y(z)=[C(zI-F)-1G+D]U(z)=Gc(z)U(z)

Gc(z)=[C(zI-F)-1G+D]

对于单输入单输出系统G(Z)是1×1维矩阵,即为Z传递函数Gc(z)

22.线性离散系统的Z特征方程:

x(kT+T)=Fx(kT)+Gu(kT)

Z变换 X(z)=(zI-F)-1[zx(0)+GU(z)]

仿照线性连续系统令矩阵(zI-F)的行列式∣zI-F∣=0为线性离散系统的Z特征方程

23.用离散状态空间法分析系统的稳定性

线性离散系统稳定的充要条件是:系统的Z特征方程的所有特征根Z=Pi,∣Pi∣<1

第五章

24.(1)①比例控制作用Kp增大将会减小稳态误差,提高系统动态响应速度,通常,Kp是根据系统静态误差系数的要求决定。

②比例控制Kp对控制性能影响:对动态特性影响:

Kp增大,系统响应快,

Kp偏大,震荡次数加大,调节时间加长。Kp太大,系统失稳。

Kp太小,系统动作迟缓。

③对稳态特性影响:

Kp增大,在系统稳定情况下,可减少稳态误差,提高控制精度,但不能完全消除稳态误差。

(2)①积分控制可以用来消除稳态误差,因为只要存在偏差,积分作用一直进行。

②积分控制Ti对控制性能影响:对动态特性影响:使系统稳定性下降,

Ti太小系统将不稳定, Ti偏小,震荡次数较多,

Ti太大 ,对系统性能影响减少,

Ti合适时,过渡特性较理想。

③对稳态特性影响:能消除稳态误差,提高控制精度,但Ti太大时,积分作用太弱,以至于不能减少稳态误差。

(3)①微分控制的作用,实质上是跟偏差的变化速率有关系,微分控制能预测偏差,产生超前的校正作用,因

此微分控制能较好改善动态性能。

②微分控制Td对控制性能影响:对动态特性影响:可改善动态特性,如超调量减少,调节时间减少,它允许

加大比例控制使稳态误差减少。

Td偏大偏小均会使调节时间较长,超调量也较大。只有合适时,才可得到较好的过渡过程。

25.数字PID控制算法的改进:

⑴积分分离PID算法:特点:保持了积分的作用,有减少了超调量,使得控制性能

有了较大的改善。

⑵不完全微分PID控制算法。特点:不但能拟制高频干扰,而且克服了普通数字PID控

制的缺点,数字调节器输出的微分作用能在各个周期里按照偏差变化的趋势,均匀的输出,真正的起到微

分作用,改善了系统的性能。

⑶微分先行PID控制算法。

特点:只对测量值(被控量)进行微分, 而不对偏

差微分,

也即对给定值无微分作用,适用于给定值频繁提降的场合,可以避免因提降给定值是所引起的超调

量过大,阀门动作过分剧烈的振荡。

⑷带死区的PID控制。

特点:在要求控制作用少变动的场合。

26.扩充临界比例度法选择PID参数的步骤:

⑴选择合适的采样周期T,调节器作纯比例Kp控制。

⑵逐渐加大比例Kp,使控制系统出现临界振荡。

⑶选择控制度。

⑷选择控制度后,按控制表选择采样周期T,Kp,Ti,Td。

⑸按照求得的整定参数,设数运行,观察控制效果,再适当调整参数,直到获得比较满意的控制效果。

27.扩充响应曲线法其步骤如下:

⑴在对象动态响应曲线上求出等效纯滞后时间t(tao),等效惯性时间常数Tm及它们的比值Tm/t。

⑵选择合适的采样周期T,调节器作纯比例Kp控制。

⑶逐渐加大比例Kp,使控制系统出现临界振荡。

⑷选择控制度。4选择控制度后,按控制表选择采样周期T,Kp,Ti,Td。

⑸按照求得的整定参数,设数运行,观察控制效果,再适当调整参数,直到获得比较满意的控制效果。

28.系统稳定性概念:

系统被控参数y(t)在输入或扰动作用下,经过若干次振荡或单调无振荡地回复到给定值状态,这种系统称为系统稳定性。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值