python绘制自定义地图_原来炫酷的可视化地图,用Python就能搞定!

f8dac137a71f6a2acdf3bee03dc6481e.png

对于可视化地图,Pyecharts是小F以前用的最多的。

还有应该就是一些网站了,现成的工具,不需要敲代码。

在5G手机可视化那一篇文章,也是用Pyecharts做的地图~

12a90235ff4716bb0f151dbba722bbbd.png

而对于Matplotlib,目前小F还没有使用它绘制过地图。

所以在查阅相关资料的时候,又发现了大佬造的轮子。

Python+Selenium+Matplotlib,实现中国地图可视化。

地图数据来源于民政部,真实可靠。

项目地址:https://gitee.com/jixuanfan/Map-of-China

d52b7816b8c0817a19ac1aa880f3715f.png

由于小F之前一直用「GitHub」保存代码,压根就没有注册「Gitee」。

而作者的代码以及相关数据是上传到「Gitee」上,需要注册下载。

不想注册那么多账号,所以查了一下在不登录情况下,能否下载项目代码。

CURL,是一个利用URL语法在命令行下工作的文件传输工具。

# 在仓库地址(https://gitee.com/jixuanfan/Map-of-China)

# 后面拼接/repository/archive/master.zip

# 下载本例项目代码

curl -o data.zip  https://gitee.com/jixuanfan/Map-of-China/repository/archive/master.zip

Windows或许需要安装,那还是老老实实注册账号,然后下载项目代码。

Mac和Linux应该都是内置CURL,直接使用命令就行,无需安装。

/ 01 / 地图数据获取

Get_Map,基于Python爬虫,主要用到Selenium+正则。

Selenium是一个用于测试网站的自动化测试工具,这里我们主要是用它来模拟浏览器操作,进而获取地图数据。

安装教程网上都有,推荐使用谷歌浏览器,驱动文件和浏览器版本需一致。

获取地图数据的两个接口地址。

# 首页URL,获取当前所有行政区划的代码

http://xzqh.mca.gov.cn/map

# 查询URL,获取国家或省市的具体地图数据

http://xzqh.mca.gov.cn/defaultQuery?

首先是获取行政区划的代码,最小应该是到县一级。

绘制不同类型的地图,所需要的数据获取函数如下。

行政代码不清楚,网上查询一下就好咯~

import Map_of_China as Map

# 创建获取地图数据对象

M=Map.Get_Map()

# 获取首页全国各省的地图数据

### 回答1: Python是一种广泛使用的高级编程语言,它提供了许多用于创建华丽的数据可视化的工具和库。 其中,Matplotlib是Python最常用的数据可视化库之一。它提供了各种类型的图表,如条形图、折线图、散点图等,可以用来展示多维数据。另外,还有Seaborn和Plotly等库,它们提供了更多现代化的图表样式和交互功能。 举个例子,假设你想要使用Matplotlib绘制一个折线图,那么你可以这样写代码: ```python import matplotlib.pyplot as plt # 准备数据 x = [1, 2, 3, 4, 5] y = [1, 4, 9, 16, 25] # 使用plot函数绘制折线图 plt.plot(x, y) # 显示图表 plt.show() ``` 这样就可以得到一个简单的折线图。你还可以使用各种函数和样式来调整图表的外观,如设置坐标轴标签、添加图例、调整线条颜色等。 通过学习Python数据可视化库,你可以创建各种华丽的图表,帮助你更好地理解和呈现数据。 ### 回答2: Python具有丰富的库和工具,可实现华丽的数据可视化。以下是我认为Python实现数据可视化时的一些亮点: 1. 强大的绘图库:Python有很多绘图库,其中最流行的是Matplotlib、Seaborn和Plotly。这些库提供了各种绘图工具和函数,允许用户创建各种类型的图表,如折线图、散点图、条形图等。它们具有丰富的细节设置和交互功能,可创建华丽的可视化效果。 2. 交互式可视化Python的绘图库还支持交互式可视化,这意味着可以通过鼠标或键盘操作图表。通过使用Bokeh和Plotly库,可以创建交互式图表和可视化工具,使用户可以自由浏览和探索数据。 3. 3D可视化Python的Matplotlib库还支持3D绘图,可以创建呈现数据第三个维度的图表。通过使用3D可视化,可以更好地理解和呈现数据之间的复杂关系,提供更深入的洞察。 4. 大数据可视化:对于大规模数据集,Python的大数据可视化库如Dask和Datashader提供了解决方案。它们允许快速处理和呈现大量数据,使得对大规模数据进行可视化变得更加容易。 5. 可视化库的整合:Python可视化库之间可以相互整合,以实现更高级的可视化效果。例如,可以使用Seaborn和Plotly库将统计图表与交互式元素结合起来,创建出色的可视化效果。 通过以上这些特点,Python能够轻松实现华丽的数据可视化。无论是展示简单的数据趋势还是解释复杂的数据关系,Python都提供了丰富的工具和库,使得数据可视化变得更加有趣和有意义。 ### 回答3: Python是一种功能强大的编程语言,具有丰富的数据可视化库,如Matplotlib、Seaborn、Plotly等,让数据可视化变得华丽。 首先,Matplotlib是Python中最知名、最常用的数据可视化库之一。它提供了各种绘图函数,支持线图、柱状图、散点图、等高线图等多种可视化方式。通过Matplotlib,用户可以轻松创建华丽的二维和三维图形。 其次,Seaborn是基于Matplotlib的高级数据可视化库。它提供了更多种样式和更高级的绘图功能。Seaborn的默认样式看起来非常漂亮,而且它还支持处理缺失数据、热力图等特殊的数据可视化需求,使得数据的表达更加美观和易读。 另外,Plotly是一个交互式数据可视化库,可以创建各种形式的动态、交互式图表,使得数据的展示更加生动有趣。Plotly支持生成多种类型的图表,如散点矩阵、平行坐标、3D表面图等,以及动画、下拉菜单等交互式功能,使得数据的呈现更具吸引力。 此外,Python还有其他一些扩展库如WordCloud、NetworkX等,它们可以帮助我们更好地展示文本数据和网络数据,并通过独特的方式提供独特的数据可视化效果。 总而言之,Python提供了丰富多样的数据可视化库,无论是基本的二维图形还是复杂的交互式动画图表,Python都能满足不同需求,让数据变得更加生动、直观。使用这些库,我们可以通过编写简单的Python代码,轻松地创建出华丽的数据可视化效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值