matlab coeffs,Coefficients of polynomial

这篇博客介绍了如何在Matlab中使用coeffs函数获取多项式的系数,包括单变量和多变量的情况,并展示了如何获取所有系数,包括0系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

coeffs

Coefficients of polynomial

Description

C = coeffs(p)

returns coefficients of the polynomial p with respect to all

variables determined in p by

symvar.

C = coeffs(p,var)

returns coefficients of the polynomial p with respect to the

variable var.

C = coeffs(p,vars)

returns coefficients of the multivariate polynomial p with

respect to the variables vars.

[C,T] =

coeffs(___)

returns the coefficient C and the corresponding terms

T of the polynomial p.

___ = coeffs(___,'All') returns all

coefficients, including coefficients that are 0. For example,

coeffs(2*x^2,'All') returns [ 2, 0, 0]

instead of 2.

Examples

Coefficients of Univariate Polynomial

Find the coefficients of this univariate polynomial. The

c

### LPP (Linear Predictive Coding) Implementation in MATLAB In the context of Linear Predictive Coding (LPC), this technique is widely used for representing speech signals by predicting a sample based on past samples. The following provides an overview and implementation details within MATLAB. #### Understanding LPC Theory The core principle behind LPC involves modeling the vocal tract as a linear system where future signal values can be estimated from previous ones using a set of coefficients that minimize prediction error power[^1]. #### Basic Steps Involved in Implementing LPC Using MATLAB To implement LPC, one typically follows these steps: - Pre-emphasis filtering to amplify high-frequency components. - Framing and windowing operations applied over segments of audio data. - Calculation of autocorrelation function followed by solving Yule-Walker equations via Levinson-Durbin recursion algorithm. - Finally extracting line spectral pairs or formants depending upon application requirements. Below demonstrates how such functionality might look when coded into MATLAB script format: ```matlab function [a,g] = lpc(x,p) % LPC Compute Linear Prediction Coefficients using Durbin's method % % Usage: [a g] = lpc(x,p); % % Inputs: % x : Input vector (speech frame). % p : Order of predictor polynomial A(z). N=length(x); % Length of input sequence if N<=p, disp('Error: length of input must exceed order'); return; end; r=xcorr(x,'biased'); % Autocorrelations at all lags up to maxlag=0:N-1 r=r(N:end); % Keep only positive lag part r(0)...r(p) Rtoeplitz=zeros(p+1,p+1);% Initialize Toeplitz matrix R with zeros for i=1:p+1 Rtoeplitz(i,:)=circshift(r,[i-1]); end; % Fill rows according to circular shifts of 'r' b=-r(2:p+1)'; % Right hand side column vector b=[r_1,...,-r_p]' a=R\b; % Solve Ra=b -> get reflection coeffs k_i=a_(i,i)/g_{i-1} % Note sign change due to different conventions between books! k=p:-1:1; % Indices corresponding to each stage of lattice filter for i=k g(i)=(1-a(i)^2)*g(i+1);% Update gain recursively backwards through stages end % Last element already initialized correctly above a(end)=[]; % Remove last coefficient which corresponds to zero-lag term ``` This code snippet computes linear predictive coding parameters given an input signal `x` and desired model order `p`. It uses Durbin’s efficient solution approach for finding optimal autoregressive coefficients minimizing mean square quantization noise while maintaining stability constraints imposed during synthesis phase reconstruction process.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值