根据维基百科的定义:
插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。
归并排序进行如下迭代操作:首先将原始序列看成 N 个只包含 1 个元素的有序子序列,然后每次迭代归并两个相邻的有序子序列,直到最后只剩下 1 个有序的序列。
现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?
输入格式:
输入在第一行给出正整数 N (≤100);随后一行给出原始序列的 N 个整数;最后一行给出由某排序算法产生的中间序列。这里假设排序的目标序列是升序。数字间以空格分隔。
输出格式:
首先在第 1 行中输出Insertion Sort
表示插入排序、或Merge Sort
表示归并排序;然后在第 2 行中输出用该排序算法再迭代一轮的结果序列。题目保证每组测试的结果是唯一的。数字间以空格分隔,且行首尾不得有多余空格。
输入样例 1:
10
3 1 2 8 7 5 9 4 6 0
1 2 3 7 8 5 9 4 6 0
输出样例 1:
Insertion Sort
1 2 3 5 7 8 9 4 6 0
输入样例 2:
10
3 1 2 8 7 5 9 4 0 6
1 3 2 8 5 7 4 9 0 6
输出样例 2:
Merge Sort
1 2 3 8 4 5 7 9 0 6
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 111;
int origin[maxn], tempOri[maxn], changed[maxn];
int n;
bool isSame(int A[], int B[]){
for(int i = 0; i < n; i++){
if(A[i] != B[i])
return false;
}
return true;
}
void showArray(int A[]){
for(int i = 0; i < n; i++){
printf("%d", A[i]);
if(i < n - 1)
printf(" ");
}
printf("\n");
}
bool insertSort(){
bool flag = false;
for(int i = 1; i < n; i++){
if(i != 1 && isSame(tempOri, changed)){
flag = true;
}
int temp = tempOri[i], j = i;
while(j > 0 && tempOri[j - 1] > temp){
tempOri[j] = tempOri[j - 1];
j--;
}
tempOri[j] = temp;
if(flag == true){
//如果为true,说明已经达到目标数组,返回true,而且此时tempOri数组中存储的是要输出的序列
return true;
}
}
return false;
}
void mergeSort(){
bool flag = false;
for(int step = 2; step / 2 <= n; step *= 2){
if(step != 2 && isSame(tempOri, changed)){
flag = true;
}
for(int i = 0; i < n; i += step){
sort(tempOri + i, tempOri + min(i + step, n));
}
if(flag == true){
showArray(tempOri);
return;
}
}
}
int main(){
scanf("%d", &n);
for(int i = 0; i < n; i++){
scanf("%d", &origin[i]);
tempOri[i] = origin[i];
}
for(int i = 0; i < n; i++){
scanf("%d", &changed[i]);
}
if(insertSort()){
printf("Insertion Sort\n");
showArray(tempOri);
}
else{
printf("Merge Sort\n");
for(int i = 0; i < n; i++){
tempOri[i] = origin[i];
}
mergeSort();
}
return 0;
}