列主元lu分解法_直接法

  • 主要研究的数学问题

研究怎么求解线性方程组

equation?tex=Ax%3Db 的问题。

以下推导,都是假设矩阵

equation?tex=A 非奇异。

  • 高斯消去法----是求解线性方程组
    equation?tex=AX%3Db
    的方法
  1. 什么是高斯消去法
先把系数矩
equation?tex=A 阵化为上三角
②然后,对线性方程组进行 回代求解

2. 算法评价:主要通过计算加减乘除的次数

时间复杂度为
equation?tex=O%5Cleft%28+n%5E%7B3%7D+%5Cright%29 级别
时间复杂度: 描述算法运行的时间。对于Gauss消去法,意思是经过多少步,算法能完成

3、算法运行的条件:

每次消元过程,约化主元素不等于0. 等价条件:系数矩阵
equation?tex=A 的所有顺序主子式
不为0.
  • 高斯消去法的实质

高斯消去法每次对系数矩阵做消元过程实质上是对矩阵

equation?tex=A 做一些列的初等行变换,即可以得到系数矩阵等于下三角矩阵乘以上三角矩阵。

equation?tex=A%3DLU.%5C%5C
  1. 矩阵的LU分解
条件:矩阵所有顺序主子式不等于0.

44e1cb87666be9dc695148fe2e078c5e.png

我们知道,只要系数矩阵

equation?tex=A 非奇异,线性方程组
equation?tex=Ax%3Db 就存在唯一解,
假设矩阵的所有顺序主子式不知道, 这时候高斯消去法就不一定有效,这时候我们引出 列主元消去法
  • 列主元高斯消去法---也是求解线性方程组
    equation?tex=AX%3Db
    的方法

1、主要思想

在每次消元时,避免小主元做消元, 选取每一列绝对值最大的元素作为约化主元素,即将其所在行与交换第一行进行交换,然后进行消元 ,依此类推,直到系数化为上三角矩阵 ,然后回代求解。

2、算法评价

① 主要是:避免小主元做消元,引起元素数量级增加,导致解不准确。 时间复杂度为
equation?tex=O%5Cleft%28+n%5E%7B3%7D+%5Cright%29 级别
  • 列主元高斯消去法的实质<
  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
实验一 列主元消去 【实验内容】 1. 理解高斯顺序消去; 2. 理解主元高斯消去在求解精度上的优点; 3. 完成列主元消去的程序; 4. 会用系统内置命令求解有唯一解的线性方程组; 【试验方与步骤】 一 、 回答下面的问题 1. 什么是线性方程组直接和迭代解,各自的特点和使用问题类型是什么? 2. LU 分解直接还是迭代解, L 、 U 矩阵的特点是什么,应用在哪些问题 中,请举例说明。 3. 给出一个舍入误差严重影响计算结果精度的例子,试着能否从多个角度说明产 生该问题的原因。 4. 迭代解的收敛性有什么意义,收敛条件用什么判定? 5. 给出例子,并说 明迭代收敛的速度。 二 、 完成下列计算,写出代码 1. 用 crame 则、用 LU 分解函数、逆矩阵函数分别完成 P35 例 3.2.1 2. 编写列主元消去程序,完成 P35 例 3.2.1 和习题 3 第 2 题 3. 用雅克比、高斯 塞德尔和 SOR 迭代完成习题 3 第 13 题,进行收敛速度的比较 分析 第 2 页 共 13 页 【实验结果】 一、第一大题 1.线性方程组的解 2.LU 分解 1. LU 分解属于直接 2. L 矩阵特点:一个对角线上的元素全为1 的下三角矩阵(即单位下三角矩阵)。 3. U 矩阵特点:上三角矩阵 4. 应用:LU 分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式 解 直接 迭代解 定义 经过有限步算数运算,可求得方程组 的精确解的方 用某种极限过程逐步逼近线性 方程组精确解的方 特点 运算步骤有限、可得精确解 极限逼近思想 适用问 题类型 计算过程中没有舍入误差 向量值序列收敛于向量* x 即 *) ( limx x k k = → 举例    − = + = 3 20 26 5 2 8 x y x y    = − = = = = −    − = + = * 1 * 2 53 106 2, 1 3 20 26 50 20 80 y x x x y x y x y 即有精确解 ,所以 两式相加,得    − = + = 3 20 26 5 2 8 x y x y , 0,1,2,... 0.15 1.3 0.4 1.6 ( 1) ( ) ( 1) ( ) =     = − = − + + + k y x x y k k k k 改写为迭代公式 其结果不断逼近精确解 然后不断迭代, 取 0,得 1.6, -1.3, (0) (0) (1) (1) x = y = x = y = 第 3 页 共 13 页 3.舍入误差严重影响计算结果精度的例子 建立 dx的递推公式 x x I n n  + = 1 0 5 (教材第二页) 1:      − = − = − 1 0 5 1 5 ln 6 ln n In n I I 2: 由0  In  In − 1,得5In − 1  In +5In − 1  6In − 1      = − +    =  +    + =    − − − n I I I I n I n n I I n n n n n 5 1 5 1 0.0087301587 0.0087301587 2 1 ) 5 21 1 6 21 1 ( 5 1 6 1 0 1 5 1 20 20 将 1 带入上式,得 1 由于计算机只能存储有限位小数,所以在1 中,随着n 的增大,其误差就会越来 越大,最后很大程度的偏向精确解;但是在2 中尽管20 I 取得比较粗略,但是随着n 的增大,其误差随传播逐步缩小,所以其最后计算得到的结果是可靠的。 4.迭代解的收敛性 迭代解 的收敛性 意义 无线逼近精确解,便于在计算机上实现编程 收敛条件的 判定 向量值序列收敛于向量x * 即 * ( ) limx x k k = → 第 4 页 共 13 页 5.举例说明迭代收敛的速度 分别用雅可比迭代(J)、高斯—塞德尔迭代(G-S)、超松弛迭代(SOR)计算方组 =            − − − − 0 1 4 1 4 1 4 1 0           3 2 1 x x x =   10 8 10 雅可比迭代 高斯—塞德尔迭代 次 数 X1 X2 X3 误差 次数 X1 X2 X3 误差 1 2.5000 2.0000 2.5000 2.1594954 1 2.5000 2.6250 3.1563 1.4570586 2 3.0000 3.2500 3.0000

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值