计算机硬件系统中 计算机心脏,办公室常用设备教案——计算机办公设备(计算机硬件及软件系统)02.doc...

办公室常用设备教案——计算机办公设备(计算机硬件及软件系统)02

第一章计算机类办公设备(二)

课?题第一章 计算机类办公设备科 目办公设备授课时间?教学目标知识目标1.计算机硬件系统的组成2.计算机软件系统的组成能力目标系统的掌握计算机的组成教材分析重 点1.硬件系统中各个组成部分的作用2.接口的使用难 点1.接口的种类及其作用2.总线的种类教学方法教 法讲授法:1)举例引导??????? 2)提问学 法记录、讨论教学设备计算机、多媒体教室、文秘实训室教学资料<><>互动设计提问: 对计算机硬件及其软件系统有哪些了解?2课时?教学步骤导入新课:计算机系统由两部分组成,即硬件系统和软件系统。计算机硬件是指各种电子线路、器件、机器装置组成的看得见摸得着的实物硬件和软件相互依存,又互为补充。可以说硬件是计算机系统的躯体,软件是计算机的头脑和灵魂,只有将这两者有效地结合起来,计算机系统才能成为有生命,有活力的系统。(二)教学内容:计算机类办公设备计算机设备的组成一:计算机硬件系统1、中央处理器(CPU):负责对信息和数据进行运算和处理。CPU是计算机中最重要的部件,被称为计算机的心脏。??? 1)运算器:负责计算机内部各种算术运算(+、-、*、/)和逻辑运算。??? 2)控制器:负责指挥和监督其他单元的正常运行,如指挥算术及逻辑单元的动作。程序输出或输入以及将数据由辅助存储移入主存器中。2、存储器1)基本概念??位和二进制数:是计算机存储的最小单位。字和字节:1个字=2个字节,1个字节=8位,汉字占两个字节。存储容量:1KB=1024B,1MB=1024KB,1GB=1024MB,1TB=1024GB2)内存储器:直接和CPU进行数据交换。只读存储器ROM:只读,断电后数据不丢失。随机存储器RAM:可读可写,断电后数据丢失。高速缓冲存储器(Cache):向CPU的速度靠近。过程:先将程序放入Cache中,下一次调用时先来检查是否有,若有直接送入主存。??? 3)外存储器 硬盘:硬盘也是外存储器,与软盘的作用和工作原理一样 软盘和软驱:3.5英寸.44MB。l??????? 光盘:CD-ROM,650MB3、主板:是主机的核心部件。扩展槽:主要用来插入各种插卡选件,扩展槽除了保证计算机的基本功能外,主要用来扩充和升级计算机。总线:计算机的主要部件——CPU、存储器和输入/输出设备,它们之间普遍采用总线结构的连接方式。由地址总线、数据总线和控制总线组成。a.ISA总线:(工业标准结构)采用16位的数据总线。b. PCI总线:(外设部件互连)总线能为高速数据传送提供32位或64位的数据通道,还与ISA多种总线兼容。PCI总线已经成为主流产品。c. AGP总线:可提高图形、图像的处理及显示速度,并具有图形加速功能。接口a. 接口的功能:接口电路具有设备选择、信号变换及缓冲等功能,以确保CPU与外设之间能协调一致地工作。b. 接口的类别:总线接口、串行口、并行口、USB接口。4、适配器:使两个或多个不能直接连接的机器或设备相联的附加设备。例如:网络适配器(网卡)显卡 3D加速卡 声卡5、输入设备:是外界向计算机传送信息的装置。键盘 鼠标手写板扫描仪数码相机6、输出设备显示器 打印机二:计算机软件系统1.系统软件2.应用软件:有特定目的的程序组。(三)总结扩展:对于计算机应用而言,无非是硬、软两个方向,如果要掌握外部设备的使用以及一些日常管理的知识,那么就必须对计算机硬件系统和软件系统有一个比较系统的认识。所以通过本堂课的学习我们应该掌握以下几个知识点:1.计算机硬件系统的组成2.计算机软件系统(四)作业布置

1

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值