signature=5c74807f8b4cbf4dafeb26f24ad0765d,A New Fuzzing Method Using Multi Data Samples Combination

摘要:

Knowledge-based Fuzzing technologies have been applied successfully in software vulnerability mining, however, its current methods mainly focus on Fuzzing target software using a single data sample with one or multi-dimension input mutation [1], and thus the vulnerability mining results are not stable, false negatives of vulnerability are high and the selection of data sample depends on human analysis. To solve these problems, this paper proposes a model named Fuzzing Test Suite Generation model using multi data sample combination (FTSGc), which can automatically select multi data samples combination from a large scale data sample set to fuzz target software and generate the test cases that can cover more codes of the software vulnerabilities. To solve Data Sample Coverage Problem (DSCP) in the proposed FTSGc, a method of covering maximum nodesrsquo; semantic attributes with minimum running cost is put forward and a theorem named Maximum Coverage Theorem is given to select the data sample combination. We conclude that DSCP is actually the Set Covering Problem (SCP). Practical experimental results show that the proposed Fuzzing method works much better than the other current Fuzzing method on the Ability of Vulnerability Mining (AVM).

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值