
说
MING SHI ZHI DAO
理

笔算加法、减法、乘法都是从个位算起,为什么笔算除法不从个位除起呢?
我们从以下三个视角来分析。
壹
平均分物的过程来看
——高位算起比较合理
以52÷2为例,就是把52根小棒平均分成2份,每份能分几根?平均分我们可以从大单位开始分,也可以从小单位开始分。
如果从小单位分,结果是这样的:先分个位上的2根,每份1根;再把十位上的5捆平均分成2份,每份2捆,还剩1捆;然后把剩下的1捆拆成10根,平均分成2份,每份5根,最后把三次平均分的结果相加,得出52÷2=26。
如果从大单位开始分,结果则是这样的:先分十位上的5捆,把5捆平均分成2份,每份得到2捆,还剩1捆,然后和个位上的2根合起来一起分,每份得到6根,这样只要分两次就可以得出52÷2=26了。
比较平均分的过程可以看出,在分物品的时候,从小单位分比从大单位分的过程麻烦(这在分数位更多的大数时会体现的更明显)。所以在平均分的时候,我们更愿意从大单位开始分,这就对应着除法竖式中的从高位算起。
贰
从竖式的书写格式来看
——高位算起比较简洁
在一些除法竖式中,比如48÷4、369÷3等等,被除数每个数位上的数字都能被除数整除,这一类型的除法从个位算起,竖式书写并不会变得复杂。但是在除法竖式中,更多的是各数位上的数平均分后会出现不够分或者有剩余的情况。在这种情况下,从个位算起,竖式书写的过程比较复杂。
以441÷3为例(如图1),个位1÷3不够除,从十位退1,算11÷3=3……2,十位上剩余的3和个位上的余数2合起来是32,再用32÷3,又遇上了个位不够除的情况,需要从十位退1,算12÷3=4,接着百位上的4和十位上剩余的2合起来除以3,这时又遭遇了十位不够除的情况,需要从百位再退1……最后还要把几次除后所得的商相加。

(图1)
被除数的位数越多,从个位算起时遭遇较高位“退1”的步骤可能越多,计算的过程就更复杂,并且通过竖式也无法完美展现思维的全过程。而从高位算起(如图2),能完整的展现思考和计算的过程,学生对除法竖式中每一步表示的意义都非常明确。所以从竖式的书写格式来比较,从高位算起更简洁。

(图2)
叁
从估算的角度来看
——对高位除得结果更关注
在用除法解决实际问题的过程中,经常需要用到估算。在估算的时候,关注的是商的取值范围,所以一般是根据被除数高位的情况来估算结果。尤其是大数相除时,计算者对高位除得的结果更为关注。
例如要解决“2020年国庆长假期间,黄山市八天假期共接待游客118737人,平均每天大约接待游客多少人?”这个问题,就要思考把被除数估做多少来计算,这时候就要根据被除数高位的情况来估算结果。把118737估做120000,得到118737÷8大约是15000人。所以从估算的角度来看,笔算除法从高位除起也更合理。
综上所述,笔算除法从高位算起更合理。实际上不管是加法、减法和乘法的从个位算起,还是除法的从高位算起,它们的算理本质上是一致的,都是先分后合,计数相同的计数单位,加上十进制原则,最后还要符合算法的一致性和简洁性原则。
以上纯属个人观点,欢迎大家批评指正。
作者简介

刘文惠,长乐区海峡路小学副校长,高级教师,福州市小学数学学科带头人,福州市骨干教师,福州市先进教育工作者,长乐区小学数学名师工作室成员,福建省优秀奥数指导教师。从教25年,潜心钻研,细心感悟,在教学中方法求新、思维求活、教法求实、学法求真。曾获第一届全国小学数学(人教版)微课评比一等奖;2019年新媒体新技术教学应用研讨会暨第十二届全国中小学创新课堂教学实践活动评比三等奖;微课获福建省中小学信息技术应用能力提升工程省级优秀应用成果奖;多次获“一师一优课 一课一名师”福州市级优课。
编辑:邹 薇
审核:林锦城
明 师 之 道

欢 迎 一 起 讲 道 理