python中pd读取csv二进制_python用pd.read_csv()方法来读取csv文件

本文详细介绍了如何使用pandas的pd.read_csv()函数读取CSV文件,包括不设置表头、自定义列名、设置索引、指定分隔符以及处理缺失数据等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

importpandas as pdprint("************取消第一行作为表头*************")

data2= pd.read_csv('rating.csv',header=None)print("************为各个字段取名**************")

data3= pd.read_csv('rating.csv',names=['user_id','book_id','rating'])print("***********将某一字段设为索引***************")

data3= pd.read_csv('rating.csv',

names=['user_id','book_id','rating'],

index_col= "user_id")print("************用sep参数设置分隔符**************")

data4= pd.read_csv('rating.csv',

names=['user_id','book_id','rating'],

sep=',')print("************自动补全缺失数据为NaN**************")

data5= pd.read_csv('data.csv',header=None)

read_csv(filepath_or_buffer: Union[ForwardRef('PathLike[str]'), str, IO[~T], io.RawIOBase, io.BufferedIOBase, io.TextIOBase, _io.TextIOWrapper, mmap.mmap], sep=, delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal: str = '.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options: Union[Dict[str, Any], NoneType] = None)

Read a comma-separated values (csv) file into DataFrame.

Also supports optionally iterating or breaking of the file

into chunks.

Additional help can be found in the online docs for

`IO Tools `_.

Parameters

----------

filepath_or_buffer : str, path object or file-like object

Any valid string path is acceptable. The string could be a URL. Valid

URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is

expected. A local file could be: file://localhost/path/to/table.csv.

If you want to pass in a path object, pandas accepts any ``os.PathLike``.

By file-like object, we refer to objects with a ``read()`` method, such as

a file handle (e.g. via builtin ``open`` function) or ``StringIO``.

sep : str, default ','

Delimiter to use. If sep is None, the C engine cannot automatically detect

the separator, but the Python parsing engine can, meaning the latter will

be used and automatically detect the separator by Python's builtin sniffer

tool, ``csv.Sniffer``. In addition, separators longer than 1 character and

different from ``'\s+'`` will be interpreted as regular expressions and

will also force the use of the Python parsing engine. Note that regex

delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``.

delimiter : str, default ``None``

Alias for sep.

header : int, list of int, default 'infer'

Row number(s) to use as the column names, and the start of the

data.  Default behavior is to infer the column names: if no names

are passed the behavior is identical to ``header=0`` and column

names are inferred from the first line of the file, if column

names are passed explicitly then the behavior is identical to

``header=None``. Explicitly pass ``header=0`` to be able to

replace existing names. The header can be a list of integers that

specify row locations for a multi-index on the columns

e.g. [0,1,3]. Intervening rows that are not specified will be

skipped (e.g. 2 in this example is skipped). Note that this

parameter ignores commented lines and empty lines if

``skip_blank_lines=True``, so ``header=0`` denotes the first line of

data rather than the first line of the file.

names : array-like, optional

List of column names to use. If the file contains a header row,

then you should explicitly pass ``header=0`` to override the column names.

Duplicates in this list are not allowed.

index_col : int, str, sequence of int / str, or False, default ``None``

Column(s) to use as the row labels of the ``DataFrame``, either given as

string name or column index. If a sequence of int / str is given, a

MultiIndex is used.

Note: ``index_col=False`` can be used to force pandas to *not* use the first

column as the index, e.g. when you have a malformed file with delimiters at

the end of each line.

usecols : list-like or callable, optional

Return a subset of the columns. If list-like, all elements must either

be positional (i.e. integer indices into the document columns) or strings

that correspond to column names provided either by the user in `names` or

inferred from the document header row(s). For example, a valid list-like

`usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.

Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.

To instantiate a DataFrame from ``data`` with element order preserved use

``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns

in ``['foo', 'bar']`` order or

``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``

for ``['bar', 'foo']`` order.

If callable, the callable function will be evaluated against the column

names, returning names where the callable function evaluates to True. An

example of a valid callable argument would be ``lambda x: x.upper() in

['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster

parsing time and lower memory usage.

squeeze : bool, default False

If the parsed data only contains one column then return a Series.

prefix : str, optional

Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ...

mangle_dupe_cols : bool, default True

Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than

'X'...'X'. Passing in False will cause data to be overwritten if there

are duplicate names in the columns.

dtype : Type name or dict of column -> type, optional

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32,

'c': 'Int64'}

Use `str` or `object` together with suitable `na_values` settings

to preserve and not interpret dtype.

If converters are specified, they will be applied INSTEAD

of dtype conversion.

engine : {'c', 'python'}, optional

Parser engine to use. The C engine is faster while the python engine is

currently more feature-complete.

converters : dict, optional

Dict of functions for converting values in certain columns. Keys can either

be integers or column labels.

true_values : list, optional

Values to consider as True.

false_values : list, optional

Values to consider as False.

skipinitialspace : bool, default False

Skip spaces after delimiter.

skiprows : list-like, int or callable, optional

Line numbers to skip (0-indexed) or number of lines to skip (int)

at the start of the file.

If callable, the callable function will be evaluated against the row

indices, returning True if the row should be skipped and False otherwise.

An example of a valid callable argument would be ``lambda x: x in [0, 2]``.

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c').

nrows : int, optional

Number of rows of file to read. Useful for reading pieces of large files.

na_values : scalar, str, list-like, or dict, optional

Additional strings to recognize as NA/NaN. If dict passed, specific

per-column NA values.  By default the following values are interpreted as

NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',

'1.#IND', '1.#QNAN', '', 'N/A', 'NA', 'NULL', 'NaN', 'n/a',

'nan', 'null'.

keep_default_na : bool, default True

Whether or not to include the default NaN values when parsing the data.

Depending on whether `na_values` is passed in, the behavior is as follows:

* If `keep_default_na` is True, and `na_values` are specified, `na_values`

is appended to the default NaN values used for parsing.

* If `keep_default_na` is True, and `na_values` are not specified, only

the default NaN values are used for parsing.

* If `keep_default_na` is False, and `na_values` are specified, only

the NaN values specified `na_values` are used for parsing.

* If `keep_default_na` is False, and `na_values` are not specified, no

strings will be parsed as NaN.

Note that if `na_filter` is passed in as False, the `keep_default_na` and

`na_values` parameters will be ignored.

na_filter : bool, default True

Detect missing value markers (empty strings and the value of na_values). In

data without any NAs, passing na_filter=False can improve the performance

of reading a large file.

verbose : bool, default False

Indicate number of NA values placed in non-numeric columns.

skip_blank_lines : bool, default True

If True, skip over blank lines rather than interpreting as NaN values.

parse_dates : bool or list of int or names or list of lists or dict, default False

The behavior is as follows:

* boolean. If True -> try parsing the index.

* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3

each as a separate date column.

* list of lists. e.g.  If [[1, 3]] -> combine columns 1 and 3 and parse as

a single date column.

* dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call

result 'foo'

If a column or index cannot be represented as an array of datetimes,

say because of an unparsable value or a mixture of timezones, the column

or index will be returned unaltered as an object data type. For

non-standard datetime parsing, use ``pd.to_datetime`` after

``pd.read_csv``. To parse an index or column with a mixture of timezones,

specify ``date_parser`` to be a partially-applied

:func:`pandas.to_datetime` with ``utc=True``. See

:ref:`io.csv.mixed_timezones` for more.

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format : bool, default False

If True and `parse_dates` is enabled, pandas will attempt to infer the

format of the datetime strings in the columns, and if it can be inferred,

switch to a faster method of parsing them. In some cases this can increase

the parsing speed by 5-10x.

keep_date_col : bool, default False

If True and `parse_dates` specifies combining multiple columns then

keep the original columns.

date_parser : function, optional

Function to use for converting a sequence of string columns to an array of

datetime instances. The default uses ``dateutil.parser.parser`` to do the

conversion. Pandas will try to call `date_parser` in three different ways,

advancing to the next if an exception occurs: 1) Pass one or more arrays

(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the

string values from the columns defined by `parse_dates` into a single array

and pass that; and 3) call `date_parser` once for each row using one or

more strings (corresponding to the columns defined by `parse_dates`) as

arguments.

dayfirst : bool, default False

DD/MM format dates, international and European format.

cache_dates : bool, default True

If True, use a cache of unique, converted dates to apply the datetime

conversion. May produce significant speed-up when parsing duplicate

date strings, especially ones with timezone offsets.

.. versionadded:: 0.25.0

iterator : bool, default False

Return TextFileReader object for iteration or getting chunks with

``get_chunk()``.

.. versionchanged:: 1.2

``TextFileReader`` is a context manager.

chunksize : int, optional

Return TextFileReader object for iteration.

See the `IO Tools docs

`_

for more information on ``iterator`` and ``chunksize``.

.. versionchanged:: 1.2

``TextFileReader`` is a context manager.

compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'

For on-the-fly decompression of on-disk data. If 'infer' and

`filepath_or_buffer` is path-like, then detect compression from the

following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no

decompression). If using 'zip', the ZIP file must contain only one data

file to be read in. Set to None for no decompression.

thousands : str, optional

Thousands separator.

decimal : str, default '.'

Character to recognize as decimal point (e.g. use ',' for European data).

lineterminator : str (length 1), optional

Character to break file into lines. Only valid with C parser.

quotechar : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted

items can include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default 0

Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of

QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

doublequote : bool, default ``True``

When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate

whether or not to interpret two consecutive quotechar elements INSIDE a

field as a single ``quotechar`` element.

escapechar : str (length 1), optional

One-character string used to escape other characters.

comment : str, optional

Indicates remainder of line should not be parsed. If found at the beginning

of a line, the line will be ignored altogether. This parameter must be a

single character. Like empty lines (as long as ``skip_blank_lines=True``),

fully commented lines are ignored by the parameter `header` but not by

`skiprows`. For example, if ``comment='#'``, parsing

``#empty\na,b,c\n1,2,3`` with ``header=0`` will result in 'a,b,c' being

treated as the header.

encoding : str, optional

Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python

standard encodings

`_ .

dialect : str or csv.Dialect, optional

If provided, this parameter will override values (default or not) for the

following parameters: `delimiter`, `doublequote`, `escapechar`,

`skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to

override values, a ParserWarning will be issued. See csv.Dialect

documentation for more details.

error_bad_lines : bool, default True

Lines with too many fields (e.g. a csv line with too many commas) will by

default cause an exception to be raised, and no DataFrame will be returned.

If False, then these "bad lines" will dropped from the DataFrame that is

returned.

warn_bad_lines : bool, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each

"bad line" will be output.

delim_whitespace : bool, default False

Specifies whether or not whitespace (e.g. ``' '`` or ``'    '``) will be

used as the sep. Equivalent to setting ``sep='\s+'``. If this option

is set to True, nothing should be passed in for the ``delimiter``

parameter.

low_memory : bool, default True

Internally process the file in chunks, resulting in lower memory use

while parsing, but possibly mixed type inference.  To ensure no mixed

types either set False, or specify the type with the `dtype` parameter.

Note that the entire file is read into a single DataFrame regardless,

use the `chunksize` or `iterator` parameter to return the data in chunks.

(Only valid with C parser).

memory_map : bool, default False

If a filepath is provided for `filepath_or_buffer`, map the file object

directly onto memory and access the data directly from there. Using this

option can improve performance because there is no longer any I/O overhead.

float_precision : str, optional

Specifies which converter the C engine should use for floating-point

values. The options are ``None`` or 'high' for the ordinary converter,

'legacy' for the original lower precision pandas converter, and

'round_trip' for the round-trip converter.

.. versionchanged:: 1.2

storage_options : dict, optional

Extra options that make sense for a particular storage connection, e.g.

host, port, username, password, etc., if using a URL that will

be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error

will be raised if providing this argument with a non-fsspec URL.

See the fsspec and backend storage implementation docs for the set of

allowed keys and values.

.. versionadded:: 1.2

Returns

-------

DataFrame or TextParser

A comma-separated values (csv) file is returned as two-dimensional

data structure with labeled axes.

REF

https://blog.csdn.net/weixin_41855010/article/details/104287348

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值