java 数据 递归_java数据结构之递归算法

概述

程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。递归有直接递归和间接递归

•直接递归:函数在执行过程中调用本身。

•间接递归:函数在执行过程中调用其它函数再经过这些函数调用本身。

•表达方式:

1422a3216071a59279f3113585cc552c.png

•递归算法有四个特性:

(1)必须有可最终达到的终止条件,否则程序将陷入无穷循环;

(2)子问题在规模上比原问题小,或更接近终止条件;

(3)子问题可通过再次递归调用求解或因满足终止条件而直接求解;

(4)子问题的解应能组合为整个问题的解。

下面将从以下几个典型的例子来讲解递归算法:

汉诺塔问题

如图,汉诺塔问题是指有三根杆子A,B,C。C杆上有若干碟子,把所有碟子从A杆上移到C杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面。求最少要移动多少次?

d6a0cafde7f2f27f71648defdde8ae1e.png

当n=1时:

Move  1  from  A  to  C

当n=2时:

Move  1  from  A  to  B

Move  2  from  A  to  C

Move  1  from  B  to  C

当n=3时:

Move  1  from  A  to  C

Move  2  from  A  to  B

Move  1  from  C  to  B

Move  3  from  A  to  C

Move  1  from  B  to  A

Move  2  from  B  to  C

Move  1  from  A  to  C

源代码

static StringBuffer str = new StringBuffer();

/**

* //汉诺塔问题

* @param n 盘子的个数

* @param x 将要移动盘子柱子

* @param y 要借用的柱子

* @param z 要移动到的柱子

* @return

*/

public static String hanio(int n, Object x, Object y, Object z) {

//String str ="";

if(1 == n)

str.append(move(x, n, z) + "\n");

else {

hanio(n-1, x, z, y);

str.append(move(x, n, z) + "\n") ;

hanio(n-1, y, x, z);

}

return str.toString();

}

private static String move(Object x, int n, Object y) {

//System.out.println("Move  " + n + "  from  " + x + "  to  " + y);

return "Move  " + n + "  from  " + x + "  to  " + y;

}

fibonacci数列

斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)

源代码

/**

* fibonacci数列

* @param n

* @return

*/

public static long fibonacci(int n) {

if((0 == n) || (1 == n)) {

return n;

}else {

return fibonacci(n-1) + fibonacci(n-2);

}

}

1加到n累加

用递归实现从1加到n,即1+2+3+4+...+n。

源代码

/**

* 累加,从1加到n,即1+2+3+4+...+n

* @param n 要累加到的数值

* @return 累加的结果

*/

public static long total(int n) {

if(1 == n) {

return n;

}else {

return total(n-1) + n;

}

}

从1到n累积

用递归实现,从1到n累积,即1*2*3*...*n

源代码

/**

* 从1到n的累积,即1*2*3*...*n

* @param n 要累乖到的数值

* @return

*/

public static long accumulate(int n) {

if(1 == n) {

return n;

}else {

return accumulate(n-1) * n;

}

}

求数组中的最大值

用递归算法求数组中的最大值。

源代码

/**

* 用递归算法求数组中的最大值

* @param a 数组

* @param low 数组下标

* @param heigh 数组上标

* @return

*/

public static int Max(int[] a, int low, int heigh) {

int max;

if(low > heigh-2) {

if(a[low] > a[heigh]) max = a[low];

else max = a[heigh];

}else {

int mid = (low + heigh)/2;

int max1 = Max(a, low, mid);

int max2 = Max(a, mid+1, heigh);

max = max1>max2 ? max1 : max2;

}

return max;

}

数字塔问题

用递归算法求解数字塔问题。

n=1时

1

n=2时

1

2      2

n=3时

1

2      2

3      3      3

n=4时

1

2      2

3      3      3

4      4      4      4

源代码

/**

* 用递归算法求解数字塔问题

* @param n 数字塔的行数

* @return 数字塔的字符串

*/

public static String tourData(int n) {

String str = new String();

if(1 == n) {

str = rowData(n) + "\n";

return str;

}

else {

str = tourData(n-1) + rowData(n) + "\n";

}

return str;

}

private static String rowData(int n) {

String str = new String();

for(int i=0; i

str = str+ n + "      ";

}

return str;

}

转载至:http://blog.csdn.net/luoweifu/article/details/8509688

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值