技校毕业是什么学历_技校毕业后属于什么学历?

技校毕业后属于什么学历?

一直以来,很多同学都很困惑,技校毕业后属于什么学历?初中生、高中生毕业后都有到技校进行学习的机会,但是却不了解从技校毕业后属于什么学历,对于这一困惑,今天, 甘肃北方技工学校的小编就来为大家答疑解惑!

2016年12月印发的《技工教育“十三五”规划》则明确:首次明确技工院校的中级技工、高级技工、预备技师(或技师)毕业生分别按相当于中专学历、大专学历、本科学历,并落实相关待遇;

因此,中级技工、高级技工、预备技师(技师)的学历,分别对应为:

中级技工 = 中专学历

高级技工 = 大专学历

预备技师 = 本科学历

技师 = 本科学历

中华人民共和国人力资源和社会保障部发布《关于大力推进技术院校改革发展的意见》(2010第57号文)明确提出:技师、高级技工毕业生可以参加公务员考试;取得高级工以上职业资格证书的毕业生参加相应专业职称评价。技师毕业生在企业工作的,比照高等教育本科毕业生各项待遇执行,享受工程师职称有关待遇;高级技工毕业生在政策上与大专以上学历人员同等对待,在使用上一视同仁,同时享受助理工程师职称有关待遇。根据《直接从非军事部门招收士官工作规定》,高级技工学校、技师学院毕业生纳入军队士官招收对象范围,首次授衔确定工资起点标准等参照全日制大专、本科毕业生执行。

其中技能教育分为中技、高技、预备技师、技师,四个层次,中技为初中毕业生读三年,高技为初中毕业生读五年,或者高中、中专、中技毕业生读三年,预备技师为高中、中技、中专毕业读四年,技师需取得预备技师资格后有一定的工作经验后方可获得。

初中生、高中生技校毕业后分别属于什么学历?

初中生读技校,如果是报读3年制的属于中技,5年制的属于高技;

而高中生读技校,3年制的属于高技,4年制的属于预备技师或技师。

中技等同于中专和高中学历水平,高技等同于大专学历水平,预备技师或技师等同于本科学历。

中考已经过去,不论成绩好坏都已经成为了过去式,倘若成绩如愿,则可以选择一所不错的高中,好好学习,备战高考;如果成绩不理想则可以转换思路,选择一个自己感兴趣的专业进入 技校学习!也会成就另一翻天地。如果您了解更多专业及学校资讯,可以关注甘肃北方技工学校官网的职教园地。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值