python获取信号频率和周期_从FFT中求出信号的周期

本文介绍如何通过Python的FFT处理一个周期信号,寻找信号的频率和周期。作者提供了一段代码,去除边界效应并计算FFT,但遇到了结果不匹配预期的问题。在分析FFT结果时,作者推测0点峰值代表信号平均值,而7点附近的小峰值可能是信号周期。寻求帮助以理解错误所在。
摘要由CSDN通过智能技术生成

我有一个周期信号,我想找出周期。

由于存在边界效应,我首先去掉边界,通过观察第一个和最后一个极小值保持N个周期。在

然后,计算FFT。在

代码:import numpy as np

from matplotlib import pyplot as plt

# The list of a periodic something

L = [2.762, 2.762, 1.508, 2.758, 2.765, 2.765, 2.761, 1.507, 2.757, 2.757, 2.764, 2.764, 1.512, 2.76, 2.766, 2.766, 2.763, 1.51, 2.759, 2.759, 2.765, 2.765, 1.514, 2.761, 2.758, 2.758, 2.764, 1.513, 2.76, 2.76, 2.757, 2.757, 1.508, 2.763, 2.759, 2.759, 2.766, 1.517, 4.012]

# Round because there is a slight variation around actually equals values: 2.762, 2.761 or 1.508, 1.507

L = [round(elt, 1) for elt in L]

minima = min(L)

min_id = L.index(minima)

start = L.index(minima)

stop = L[::-1].index(minima)

L = L[start:len(L)-stop]<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值