浪漫的数据分析
码龄6年
关注
提问 私信
  • 博客:288,883
    动态:1
    视频:3
    288,887
    总访问量
  • 52
    原创
  • 1,809,685
    排名
  • 175
    粉丝
  • 5
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-09-27
查看详细资料
个人成就
  • 获得233次点赞
  • 内容获得91次评论
  • 获得1,648次收藏
  • 代码片获得7,887次分享
创作历程
  • 3篇
    2023年
  • 9篇
    2022年
  • 37篇
    2021年
  • 6篇
    2020年
  • 1篇
    2018年
成就勋章
TA的专栏
  • python付费专栏
    付费
    2篇
  • TensorFlow2
    9篇
  • NLP自然语言处理
    3篇
  • 数据分析
    17篇
  • 机器学习
    28篇
  • 算法
    19篇
  • 量化投资
    1篇
  • 推荐系统
    9篇
  • python学习
    2篇
  • tableau
    1篇
  • 指数分析
    1篇
  • Kettle
    1篇
  • SPARK学习
    4篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Embodied AI 具身智能

具身智能定义:智能体通过与环境产生交互后,通过自身的学习,产生对于客观世界的理解和改造能力。具身智能假设:智能行为可以被具有对应形态的智能体,通过适应环境的方式学习到。因此,地球上所有的生物,都可以说是具身智能。具身智能是能够提升当前的“弱人工智能”认知能力的重要方式。人工智能可以通过与环境交互的渠道,从真实的物理或虚拟的数字空间中学习和进步。同时,具身智能是产生超级人工智能的一条可能路径。具身AI对立的词是Internet AI,指通过互联网上的数据进行学习,比如我们一直在做的CV、NLP。
原创
发布博客 2023.04.12 ·
1627 阅读 ·
1 点赞 ·
1 评论 ·
9 收藏

palme

发布视频 2023.04.12

Pytorch transformers tokenizer 分词器词汇表添加新的词语和embedding

NLP添加新词汇
原创
发布博客 2023.02.04 ·
5359 阅读 ·
6 点赞 ·
3 评论 ·
33 收藏

pytorch/transformers 最后一层不加激活函数的原因

bert最后一层为什么没有激活函数softmax或者sigmoid?
原创
发布博客 2023.01.06 ·
1910 阅读 ·
2 点赞 ·
1 评论 ·
4 收藏

【优秀的NLP/多模态】优秀讲解资料汇总

NLP优秀的学习资料
原创
发布博客 2022.12.24 ·
455 阅读 ·
0 点赞 ·
10 评论 ·
0 收藏

paddlepaddle无法识别GPU的坑

paddle安装的坑,识别不了GPU
原创
发布博客 2022.10.17 ·
6740 阅读 ·
5 点赞 ·
3 评论 ·
15 收藏

CatBoost 和 Light GBM 和 XGBoost 使用GPU训练对比

Kaggle比赛各种增强算法,CatBoost 和 Light GBM 和 XGBoost每种算法处理类别变量了解参数在数据集上实现每种算法的性能
原创
发布博客 2022.07.11 ·
5742 阅读 ·
5 点赞 ·
0 评论 ·
25 收藏

AI智能抠图工具--头发丝都可见

AI智能抠图,细到头发丝级别,而且非常快速,1分钟出片,高清效果
原创
发布博客 2022.06.25 ·
651 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

随机森林做特征重要性排序和特征选择

随机森林模型介绍:随机森林模型不仅在预测问题上有着广泛的应用,在特征选择中也有常用。随机森林是以决策树为基学习器的集成学习算法。随机森林非常简单,易于实现,计算开销也很小,更令人惊奇的是它在分类和回归上表现出了十分惊人的性能。随机森林模型在拟合数据后,会对数据属性列,有一个变量重要性的度量,在sklearn中即为随机森林模型的 feature_importances_ 参数,这个参数返回一个numpy数组对象,对应为随机森林模型认为训练特征的重要程度,float类型,和为1,特征重要性度数组中,数值越
原创
发布博客 2022.02.24 ·
52586 阅读 ·
48 点赞 ·
14 评论 ·
558 收藏

量化投资之定投,无脑却收益还不错,记得周三来

目标:本系列开始重点研究量化,逐步改善模型,改善策略,然后评估各个策略的优劣。本文是第一篇,也是最容易最无脑投资的一篇,每周三定投,收益还不错。内容:如果工作太忙没法投资,闲钱无处放,不妨看看这这种方式。学金融的都知道最简单靠谱的投资方式:定投。是否真有效?假期封在家,做了下实验。假设每周,通过支付宝线下买基金定投1000,从15年元旦开始。就投创业板吧,亏钱了就当给科技做贡献。要知道15年可是股灾年,19年也是,经历了2次股灾还能有收益吗?一起来看看到今天2020-02-07,收益如何?
原创
发布博客 2022.02.07 ·
1007 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

python查漏补缺--抽象类和接口以及Overrides、函数重载

目标:掌握python中的抽象类和抽象接口。封装和继承在java中用得挺多的,python中貌似用得真不多,但是为了应付考试,也是的了解。学习内容:抽象类,就是总结一些基本方法,每个子类必须自己实现这些方法。如果是接口,应该强制子类实现。不实现就报错。python抽象类和接口的区别:接口中的方法全部需要用抽象方法,强制继承的对象实现。抽象类可以有部分方法已经实现python 原生不支持接口类,需要导入abc包。python3.4以后自带此包,不用在import1、 定义一个抽象类。from
原创
发布博客 2022.01.19 ·
1570 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

报错org.apache.htrace htrace-core4 4.1.0 incubating htrace-core4.jar 报错spark

[NOT FOUND ]
原创
发布博客 2022.01.16 ·
1622 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

win10安装部署网络测试工具 NetCat 用于Spark跑测试

win10安装部署网络测试工具 NetCat:步骤:提示:这里可以添加要学的内容例如:1、 官方下载2、 复制nc64.exe相关文件3、 执行nc64命令监听端口4、 执行nc64命令,向指定端口发送数据官方下载:下载地址:https://eternallybored.org/misc/netcat/1、两个版本都可以使用,这里选择 netcat 1.12复制文件:把下载好的文件解压,将文件夹中的所有内容复制到C:\Windows\System32的文件夹下提示:win1
原创
发布博客 2022.01.15 ·
10977 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

推荐系统的发展演进历史和模型的目标及优缺点

推荐系统发展历程提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录推荐系统发展历程前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,
原创
发布博客 2021.12.24 ·
9295 阅读 ·
8 点赞 ·
1 评论 ·
44 收藏

tensorflow2 训练和预测使用不同的输出层、获取权重参数

目标:通过训练tensorflow2时设置不同的输出分支,然后可以在训练和测试时,把模型进行分离,得到训练和预测时,某些层的参数不同。目前还没发现有更好的办法。第二,获取训练模型的参数。获取模型参数:比较简单,就是调用#获取训练后的权重参数weigts_parm = model.get_weights()获得的就是模型参数的每一层权重和偏置信息。模型不同输出:想不到更好办法,如果有人有其他办法,更好。原理就是:模型构建时,构建两个分支,一个用于训练train,一个用于预测pr
原创
发布博客 2021.12.19 ·
5439 阅读 ·
3 点赞 ·
0 评论 ·
15 收藏

tensorflow 1.X迁移至tensorflow2 代码写法

这里写目录标题目标:代码改写成tf2格式tf1和tf2区别:改写内容:tf.placeholdertf.Sess,sess.run具体例子1:结论:目标:代码改写成tf2格式把tensorflow 1.X中的代码,迁移到tensorflow2中。一些常见的改写经验。包括sess,tf.placeholder, tf.InteractiveSession(),tf.Session()tensorflow2相比于tensorflow 1.x版本有较大的变化,且网上现在好多文章的代码都是基于tf1.x版本的
原创
发布博客 2021.12.13 ·
4287 阅读 ·
10 点赞 ·
0 评论 ·
31 收藏

TensorFlow2快速模型构建及tensorboard初体验

学习目标:了解TensorFlow 2 模型构建方法,掌握keras。同时结合tensorboard图像化展示,进而进行模型的调优等。模型目标:预测图片分类预测任务:预测像素点为(28,28)的灰度照片的分类。数据集为 tf.keras.datasets.fashion_mnist的分类数据学习内容1:构建模型构建方法:采用keras中的layer,一层层堆叠,然后compile代码:import tensorflow as tffashion_mnist = tf.keras.
原创
发布博客 2021.12.04 ·
816 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.nn.dropout和tf.keras.layers.Dropout的区别(TensorFlow2.3)与实验

这里写目录标题场景:dropout和Dropout区别问题描述:结论:深层次原因:dropout是底层API,Dropout是高层API场景:dropout和Dropout区别全网搜索tf.nn.dropout和tf.keras.layers.Dropout区别,发现好多都是错误的讲解,因此有必要进行一次实验和纠错。tf.nn.dropout和tf.keras.layers.Dropout的区别,看本文就足够了。问题描述:tf.nn.dropout和tf.keras.layers.Dropou
原创
发布博客 2021.11.29 ·
4603 阅读 ·
5 点赞 ·
1 评论 ·
7 收藏

tensorflow2 神经网络模型构建4种方法

这里写目录标题学习目标:学习内容:1. 使用现有的预训练模型线下训练,线上加载运行线下训练线上加载迁移学习2.Keras Sequential模式建立模型(不推荐,灵活性太差)3.Functional API 函数api建立模型(最常用,可构建复杂网络)4.tf构建模型Class总结:学习目标:tensorflow2模型构建4种方法,掌握其优缺点。顺便:compile是TensorFlow2专门用来训练模型的,很方便,避免了写Gradenttape那种形式化结构,直观明了,一定要掌握。学习内容:
原创
发布博客 2021.11.29 ·
3057 阅读 ·
3 点赞 ·
0 评论 ·
20 收藏

阿里DIN模型(深度兴趣网络)详解及理解

这里写目录标题目标:模型产生原因:核心思想:模型介绍:Base model改进模型模型算法设计论文的算法改进参考资料目标:掌握2017年阿里提出的深度兴趣网络(Deep Interest Network for Click-Through Rate Prediction)以及后续的DIEN。本篇介绍DIN原文:Deep Interest Network for Click-Through Rate Prediction21 Jun 2017Deep Interest Evolution Net
原创
发布博客 2021.11.16 ·
9328 阅读 ·
5 点赞 ·
1 评论 ·
45 收藏
加载更多