acm1008用java_【解题总结】2020 CCPC 网络选拔赛

1010 Reports

签到,略。

1003 Express Mail Taking

简单贪心,先往右边走,然后逐步往左边走。

1007 CCPC Training Class

答案就是出现次数最多的字符出现的次数。

1011 3x3 Convolution

容易发现只有当 K 1 , 1 = 1 K_{1, 1} = 1K1,1​=1 时输出和原矩阵相同,否则一定会收敛到 O OO。

1006 Robotic Class

题意:定义 n nn 个分段函数,每个函数形如

f ( t , x ) = { f ( d t , 0 , c t , 0 x + b t , 0 ) x ≤ a t , 0 f ( d t , 1 , c t , 1 x + b t , 1 ) a t , 0 < x ≤ a t , 1 ⋮ f ( d t , k t − 1 , c t , k t − 1 x + b t , k t − 1 ) a t , k t − 2 < x ≤ a t , k t − 1 f ( d t , k t , c t , k t x + b t , k t ) a t , k t − 1 < x f(t, x) = \begin{cases} f\left(d_{t, 0}, c_{t, 0}x +b_{t, 0}\right)& x \le a_{t, 0} \\ f\left(d_{t, 1}, c_{t, 1}x +b_{t, 1}\right) & a_{t, 0}

t tt 之间形成一个 DAG,只有 n nn 没有出边,其中 f ( n , x ) = x f(n, x) = xf(n,x)=x。问 ∀ 1 ≤ i ≤ n \forall 1 \le i \le n∀1≤i≤n,f ( i , x ) f(i, x)f(i,x) 是否是连续函数。

显然可以在 O ( n log ⁡ n ) O(n \log n)O(nlogn) 时间内用二分计算出任意的 f ( t , x ) f(t, x)f(t,x)。

假设现在要验证 f ( t , x ) f(t, x)f(t,x) 的连续性,如果对于任意的 i ii,f ( d t , i , x ) f(d_{t, i}, x)f(dt,i​,x) 都是连续函数,那么只要检查在分段的边界上 f ( t , x ) f(t, x)f(t,x) 是否连续即可,即是否有对于任意的 i ii,有 f ( d t , i , c t , i a t , i + b t , i ) = f ( d t , i + 1 , c t , i + 1 a t , i + b t , i + 1 ) f\left(d_{t, i}, c_{t, i}a_{t, i} + b_{t, i}\right)= f\left(d_{t, i+1}, c_{t, i+1}a_{t, i} + b_{t, i+1}\right)f(dt,i​,ct,i​at,i​+bt,i​)=f(dt,i+1​,ct,i+1​at,i​+bt,i+1​)。

时间复杂度 O ( T n K log ⁡ n ) , K = ∑ t k t O(TnK\log n), K = \sum_t k_tO(TnKlogn),K=∑t​kt​。

1005 Lunch

题意:有 n nn 堆石子,每次可以选择一个数目 l > 1 l>1l>1 的堆,将其分割为 k > 1 k>1k>1 个数目为 l k \frac{l}{k}kl​ 的堆。所有堆均为 1 11 时当前玩家输。问先手是否必胜。

我好像只会打表找规律…

规律就是每个数的 SG 值为其所有质因子次幂的和,如果该数是奇数就还要加一。

1002 Graph Theory Class

题意:给定 [ 2 , n + 1 ] [2, n+1][2,n+1] 这 n nn 个整数,两个数 i , j i, ji,j 的边权为 lcm ⁡ ( i , j ) \operatorname{lcm}(i, j)lcm(i,j),求最小生成树。

考虑每个数应该和谁连边。直觉是每个数和其最大的约数连边,质数连 2 22。那么答案就是 [ 2 , n + 1 ] [2, n+1][2,n+1] 求和然后再加所有范围内质数的和,最后减掉多算的 4。于是用 min_25 筛即可。

1012 Xor

原题题意够简单了,不叙述。

说起来这还是一个原题,Comet OJ Contest 12 出过。不妨去看那一题的解法。

1013 Residual Polynomial

题意:给定一个初始多项式 f 1 ( x ) = ∑ i = 0 n a i x i f_1(x)= \sum_{i=0}^{n}a_i x^if1​(x)=∑i=0n​ai​xi,对于 2 ≤ i ≤ n 2\le i\le n2≤i≤n,有 f i ( x ) = b i f i − 1 ′ ( x ) + c i f i − 1 ( x ) f_i(x) = b_i f_{i-1}'(x) + c_if_{i-1}(x)fi​(x)=bi​fi−1′​(x)+ci​fi−1​(x)。求 f n ( x ) f_n(x)fn​(x) 的系数。

设 e i e_iei​ 为 ∏ i = 2 n ( b i + c i ) \prod_{i=2}^{n} (b_i + c_i)∏i=2n​(bi​+ci​) 中,含有 i ii 个 c cc 的项之和(或者说,设 e i e_iei​ 为 ∏ i = 2 n ( b i + c i x ) \prod_{i=2}^{n} (b_i + c_ix)∏i=2n​(bi​+ci​x) 中,x i x^ixi 的系数)。那么有:

f n ( x ) = ∑ i = 0 n − 1 e n − i − 1 f 1 ( i ) ( x ) f_n(x) = \sum_{i = 0}^{n-1}e_{n - i - 1}f^{(i)}_1(x)fn​(x)=i=0∑n−1​en−i−1​f1(i)​(x)

设 f n ( x ) = ∑ i = 0 n w i x i f_n(x) = \sum_{i=0}^{n}w_i x^ifn​(x)=∑i=0n​wi​xi。展开发现

i ! w i = ∑ j + k = i + n − 1 e j k ! a k i! w_i = \sum_{ j + k = i + n - 1} e_{j} k!a_ki!wi​=j+k=i+n−1∑​ej​k!ak​

后面这个是一个简单的卷积。前面 e ee 怎么求?考虑分治,先求 [ l , m i d ] , [ m i d + 1 , r ] [l, mid], [mid + 1, r][l,mid],[mid+1,r] 两部分的 e ee,然后用一个卷积合并这两个部分即可。

时间复杂度为 O ( n log ⁡ 2 n ) O(n\log^2 n)O(nlog2n)。

1004 Chess Class

待补。。。

1001 Art Class

待补。。。

1008 PE Class

待补。。。

1009 Math Class

待补。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值