给定一个由整数数组 A
表示的环形数组 C
,求 C
的非空子数组的最大可能和。
在此处,环形数组意味着数组的末端将会与开头相连呈环状。(形式上,当0 <= i < A.length
时 C[i] = A[i]
,而当 i >= 0
时 C[i+A.length] = C[i]
)
此外,子数组最多只能包含固定缓冲区 A
中的每个元素一次。(形式上,对于子数组 C[i], C[i+1], ..., C[j]
,不存在 i <= k1, k2 <= j
其中 k1 % A.length = k2 % A.length
)
示例 1:
输入:[1,-2,3,-2] 输出:3 解释:从子数组 [3] 得到最大和 3
示例 2:
输入:[5,-3,5] 输出:10 解释:从子数组 [5,5] 得到最大和 5 + 5 = 10
示例 3:
输入:[3,-1,2,-1] 输出:4 解释:从子数组 [2,-1,3] 得到最大和 2 + (-1) + 3 = 4
示例 4:
输入:[3,-2,2,-3] 输出:3 解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3
示例 5:
输入:[-2,-3,-1] 输出:-1 解释:从子数组 [-1] 得到最大和 -1
提示:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
解题思路
动态规划:相信大家都做过求一个数组中连续子数组的最大和,解法是定义dp[i]表示以i结尾的最大子数组和,其状态转换方程为dp[i] = max(dp[i-1]+A[i],A[i])。但是本题的关键在于数组是一个环形数组,解决办法是分两种情况考虑:(1)不超过边界的子数组的最大和,解决办法和上面一样;(2)超过边界的子数组的最大和,另外开辟一个数组记录子数组最小的和,然后用整个数组的和减去最小数组和中最小的值,即为跨越边界的子数组最大和。
最后还要对全是负数的情况进行判断。
int maxSubarraySumCircular(vector<int>& A) {
int len = A.size(),sum = A[0];
int dpmax[len] = {0},maxn = A[0];
int dpmin[len] = {0},minn = A[0];
dpmax[0] = dpmin[0] = A[0];
for(int i=1;i<len;i++){
sum += A[i];
dpmax[i] = max(dpmax[i-1]+A[i],A[i]);
dpmin[i] = min(dpmin[i-1]+A[i],A[i]);
maxn = max(maxn,dpmax[i]);
minn = min(minn,dpmin[i]);
}
if(maxn < 0) return maxn;
return max(maxn,sum-minn);
}