Leetcode 918:环形子数组的最大和(详细动态规划解法!)

博客围绕环形数组展开,给定由整数数组表示的环形数组,其末端与开头相连呈环状。要求找出该环形数组非空子数组的最大可能和,且子数组最多只能包含数组中每个元素一次,还给出了多个示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个由整数数组 A 表示的环形数组 C,求 C 的非空子数组的最大可能和。

在此处,环形数组意味着数组的末端将会与开头相连呈环状。(形式上,当0 <= i < A.length 时 C[i] = A[i],而当 i >= 0 时 C[i+A.length] = C[i]

此外,子数组最多只能包含固定缓冲区 A 中的每个元素一次。(形式上,对于子数组 C[i], C[i+1], ..., C[j],不存在 i <= k1, k2 <= j 其中 k1 % A.length = k2 % A.length

 

示例 1:

输入:[1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3

示例 2:

输入:[5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10

示例 3:

输入:[3,-1,2,-1]
输出:4
解释:从子数组 [2,-1,3] 得到最大和 2 + (-1) + 3 = 4

示例 4:

输入:[3,-2,2,-3]
输出:3
解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3

示例 5:

输入:[-2,-3,-1]
输出:-1
解释:从子数组 [-1] 得到最大和 -1

 

提示:

  1. -30000 <= A[i] <= 30000
  2. 1 <= A.length <= 30000

 

解题思路

动态规划:相信大家都做过求一个数组中连续子数组的最大和,解法是定义dp[i]表示以i结尾的最大子数组和,其状态转换方程为dp[i] = max(dp[i-1]+A[i],A[i])。但是本题的关键在于数组是一个环形数组,解决办法是分两种情况考虑:(1)不超过边界的子数组的最大和,解决办法和上面一样;(2)超过边界的子数组的最大和,另外开辟一个数组记录子数组最小的和,然后用整个数组的和减去最小数组和中最小的值,即为跨越边界的子数组最大和。

最后还要对全是负数的情况进行判断。

int maxSubarraySumCircular(vector<int>& A) {
        int len = A.size(),sum = A[0];
        int dpmax[len] = {0},maxn = A[0];
        int dpmin[len] = {0},minn = A[0];
        dpmax[0] = dpmin[0] = A[0];
        for(int i=1;i<len;i++){
            sum += A[i];
            dpmax[i] = max(dpmax[i-1]+A[i],A[i]);
            dpmin[i] = min(dpmin[i-1]+A[i],A[i]);
            maxn = max(maxn,dpmax[i]);
            minn = min(minn,dpmin[i]);
        }
        if(maxn < 0) return maxn;
        return max(maxn,sum-minn);
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值