区间&环形动态规划

区间&环形动态规划

区间动态规划

主要思路:定义数组 d p [ i ] [ j ] dp[i][j] dp[i][j]为子区间 [ i , j ] [i,j] [i,j]的最优解,然后建立动态规划方程,枚举的变量一般为距离,也就是 j − i + 1 j-i+1 ji+1

区间DP根据不同的类型也分不同的种类。

区间分段点DP

此类区间DP在状态转移的时候需要枚举子区间的分段点,把子区间分成两个部分合并求解。

例题:P1880 石子合并

#include <bits/stdc++.h>

#define FR freopen("in.txt","r",stdin);

using namespace std;

typedef long long ll;

int raw[250];

ll dp[250][250];
ll dp1[250][250];
ll psum[250];
int main()
{
    int n;
    cin >> n;

    for(int i = 1; i<=n; i++)
    {
        cin >> raw[i];
        psum[i] = raw[i] + psum[i-1];
    }
    // copy
    for(int i = 1; i<=n; i++)
    {
        raw[i + n] = raw[i];
        psum[i + n] = raw[i] + psum[i + n-1];
    }


    // dp

    for(int len = 2; len <= n; len++)
        for(int s = 1; s+len-1 <= 2 * n; s++)
        {
            dp1[s][s+len-1] = LONG_LONG_MAX;
            for(int k = s; k<s+len-1; k++)
            {
                dp[s][s+len-1] = max(dp[s][s+len-1],dp[s][k] + dp[k+1][s+len-1] + psum[s+len-1] - psum[s-1]);
                dp1[s][s+len-1] = min(dp1[s][s+len-1],dp1[s][k] + dp1[k+1][s+len-1] + psum[s+len-1] - psum[s-1]);
            }
        }
    ll ans1 = 0,ans2 = LONG_LONG_MAX;
    for(int i = 1; i+n-1<=2 * n; i++)
    {
        ans1 = max(ans1,dp[i][i+n-1]);
        ans2 = min(ans2,dp1[i][i+n-1]);
    }
    cout << ans2 << endl << ans1;
    return 0;
}

P1220

关路灯,经典的区间分段点DP问题。即枚举掉头的位置即可。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

#define FR freopen("in.txt", "r", stdin)
#define FW freopen("out.txt", "w", stdout)

ll pos[55];
ll wi[55];

ll dp[55][55];

ll ti[55][55];

int main()
{
    int n, c;
    scanf("%d %d", &n, &c);

    for (int i = 1; i <= n; i++)
    {
        scanf("%lld %lld", pos + i, wi + i);
    }

    for (int i = 0; i < 55; i++)
        for (int j = 0; j < 55; j++)
            dp[i][j] = INT_MAX;

    for (int i = 0; i < 55; i++)
    {
        dp[i][i] = 0;
    }
    ll pp = 0;
    ll sum = 0;
    dp[c][c] = 0;
    ti[c][c] = 0;
    for (int i = c + 1; i <= n; i++)
    {
        pp += pos[i] - pos[i - 1];
        sum += pp * wi[i];
        dp[c][i] = sum;
        ti[c][i] = 2 * pp;
    }
    if (c != 1)
        for (int len = 2; len <= n; len++)
        {
            int st = 0;

            if (len + c - 2 <= n)
            {
                st = c - 1;
            }
            else
            {
                st = n - len + 1;
            }

            for (int ed = st + len - 1; ed >= c && st >= 1; st--, ed--)
            {
                for (int r = c; r <= ed; r++)
                {
                    ll tim = 0;
                    ll cost = 0;
                    tim = ti[st + 1][r] + pos[st + 1] - pos[st];
                    cost = dp[st + 1][r] + tim * wi[st];
                    if (r != ed)
                    {
                        tim += pos[r] - pos[st];
                        for (int j = r + 1; j <= ed; j++)
                        {
                            tim += pos[j] - pos[j - 1];
                            cost += tim * wi[j];
                        }
                        tim += pos[ed] - pos[st];
                    }

                    if (cost < dp[st][ed])
                    {
                        dp[st][ed] = cost;
                        ti[st][ed] = tim;
                    }
                }
            }
        }

    printf("%lld", dp[1][n]);

    return 0;
}

回文消除:有点思维的区间分段点DP

CF607B

我们考虑 d p [ i ] [ j ] dp[i][j] dp[i][j]为区间 [ i , j ] [i,j] [i,j]的最小花费,若 a [ i ] = a [ j ] a[i]=a[j] a[i]=a[j]那么两端的一定可以在中间消除到最后一步的时候顺带消除,但这并不一定是最优的,还需继续考虑下面的情况。一般情况(包括 a [ i ] = a [ j ] a[i]=a[j] a[i]=a[j]),那么我们考虑将两端由谁和谁组合消除,那么我们枚举分段点即可。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

#define FR freopen("in.txt", "r", stdin)
#define FW freopen("out1.txt", "w", stdout)

int arr[505];

int dp[505][505];

int main()
{
    int n;
    scanf("%d", &n);

    for (int i = 1; i <= n; i++)
    {
        scanf("%d", arr + i);
    }

    for (int i = 0; i < 505; i++)
    {
        for (int j = 0; j < 505; j++)
        {
            dp[i][j] = 1000000000;
        }
    }

    for (int i = 1; i <= n; i++)
    {
        dp[i][i] = 1;
    }

    for (int i = 1; i < n; i++)
    {
        if (arr[i] == arr[i + 1])
        {
            dp[i][i + 1] = 1;
        }
        else
        {
            dp[i][i + 1] = 2;
        }
    }

    for (int l = 3; l <= n; l++)
    {
        for (int st = 1; st + l - 1 <= n; st++)
        {
            int ed = st + l - 1;
            if (arr[st] == arr[ed])
            {
                dp[st][ed] = dp[st + 1][ed - 1];
            }
            for (int k = st; k < ed; k++)
            {
                dp[st][ed] = min(dp[st][ed], dp[st][k] + dp[k + 1][ed]);
            }
        }
    }

    printf("%d", dp[1][n]);
    return 0;
}

涂色、打印机:

LeetCode 664

P4170

如果左端点和右端点相同,那么左端点可以被涂右端点的时候带过,或者右端点可以被涂左端点的时候带过,如果不相同,那么就枚举分段点。

class Solution
{
public:
    int dp[105][105];
    int strangePrinter(string s)
    {
        for (int i = 0; i < 105; i++)
        {
            for (int j = 0; j < 105; j++)
            {
                dp[i][j] = 1000000000;
            }
        }

        for (int i = 0; i < 105; i++)
        {
            dp[i][i] = 1;
        }
        for (int l = 2; l <= s.size(); l++)
        {
            for (int st = 0; st + l - 1 < s.size(); st++)
            {
                int ed = st + l - 1;
                if (s[st] == s[ed])
                {
                    dp[st][ed] = min(dp[st][ed], min(dp[st][ed - 1], dp[st + 1][ed]));
                }
                for (int k = st; k < ed; k++)
                {
                    dp[st][ed] = min(dp[st][ed], dp[st][k] + dp[k + 1][ed]);
                }
            }
        }
        return dp[0][s.size() - 1];
    }
};

LeetCode 375

用区间DP构造最优的二叉树。

class Solution
{
public:
    int getMoneyAmount(int n)
    {
        vector<vector<int>> dp(205, vector<int>(205));
        for (int len = 2; len <= n; len++)
        {
            for (int st = 1; st + len - 1 <= n; st++)
            {
                int ed = st + len - 1;
                dp[st][ed] = 100000000;
                for (int k = st; k <= ed; k++)
                {
                    dp[st][ed] = min(dp[st][ed], max(dp[st][k - 1], dp[k + 1][ed]) + k);
                }
            }
        }
        return dp[1][n];
    }
};

区间掐头尾DP

有一类区间DP的状态为 d p [ l ] [ r ] [ 0 / 1 ] dp[l][r][0/1] dp[l][r][0/1],其中最后一维状态与区间的首尾有关系,此类区间DP叫做区间掐头尾DP。

P3205

我们发现,给定一个期望序列,能做尾元素的只有当前的尾元素和头元素。因此定义 d p [ l ] [ r ] [ 0 / 1 ] dp[l][r][0/1] dp[l][r][0/1]为当头/尾元素做尾元素的时候的方案数。

那么状态转移方程如下:

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

#define FR freopen("in.txt", "r", stdin)
#define FW freopen("out1.txt", "w", stdout)

int arr[1005];

ll dp[1005][1005][2];

#define MOD 19650827

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", arr + i);
    }

    if (n == 1)
    {
        printf("1");
        return 0;
    }

    for (int i = 1; i < n; i++)
    {
        if (arr[i] < arr[i + 1])
        {
            dp[i][i + 1][0] = dp[i][i + 1][1] = 1;
        }
    }

    for (int len = 3; len <= n; len++)
        for (int st = 1; st + len - 1 <= n; st++)
        {
            int ed = st + len - 1;

            if (arr[ed] > arr[ed - 1])
            {
                dp[st][ed][1] = (dp[st][ed][1] + dp[st][ed - 1][1]) % MOD;
            }

            if (arr[ed] > arr[st])
            {
                dp[st][ed][1] = (dp[st][ed][1] + dp[st][ed - 1][0]) % MOD;
            }

            if (arr[st] < arr[ed])
            {
                dp[st][ed][0] = (dp[st][ed][0] + dp[st + 1][ed][1]) % MOD;
            }

            if (arr[st] < arr[st + 1])
            {
                dp[st][ed][0] = (dp[st][ed][0] + dp[st + 1][ed][0]) % MOD;
            }
        }

    printf("%lld", (dp[1][n][0] + dp[1][n][1]) % MOD);
    return 0;
}

由此可AC该题。

当时我读错了题意,以为比较大小和当前正在排序的队列的尾元素比较大小,得到了以下AC代码,变成了经典的区间割点DP,一道题双倍经验。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

#define FR freopen("in.txt", "r", stdin)
#define FW freopen("out1.txt", "w", stdout)

int arr[1005];

ll dp[1005][1005];
bool mono[1005][1005];

#define MOD 19650827

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", arr + i);
    }

    for (int i = 1; i <= n; i++)
    {
        dp[i][i] = 1;
        mono[i][i] = true;
    }

    for (int len = 2; len <= n; len++)
        for (int st = 1; st + len - 1 <= n; st++)
        {
            int ed = st + len - 1;
            mono[st][ed] = mono[st][ed - 1] && arr[ed] > arr[ed - 1];
            if (mono[st][ed])
            {
                dp[st][ed] = (dp[st][ed] + 1) % MOD;
            }

            for (int k = st + 1; k <= ed; k++)
            {
                if (arr[st] < arr[k] && mono[k][ed])
                {
                    dp[st][ed] = (dp[st][ed] + dp[st + 1][k]) % MOD;
                }
            }
        }

    printf("%lld", dp[1][n]);
    return 0;
}

环形动态规划

主要思路:定义数组 d p [ i ] [ j ] dp[i][j] dp[i][j]为子区间 [ i , j ] [i,j] [i,j]的最优解,然后建立动态规划方程,枚举的变量一般为距离,也就是 j − i + 1 j-i+1 ji+1。与区间动态规划不同的是,通常将一个环剪开变成一个区间,然后重复这个区间两次,解决这个大区间上的问题,可以避免环的接头处理。

即一个有 n n n个元素的环,可以等价于 2 n 2n 2n个区间处理,即可转换为区间DP问题。

例题:P1880 石子合并

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值