上一章中,利用某些函数能积分的性质,可以应用积分判别法(Integral Tests)判断级数的收敛。现在有一些级数对应的函数不能积分,必须换一种方式来判断。
比较判别法(Comparison Tests)是一种像夹逼定理的判别方法。
比较判别法Comparison Test
The Comparison Test Definition: let
(a) if
(b) if
这里要注意这个nonnegative(非负)的条件,另外,和积分判别法不同的是,这里的三连不等式是分段判断收敛or发散的,而积分判别法是同时发散or收敛的(如果积分发散,则级数也发散)。刚开始我觉得难以理解。
Example: prove that
因为而
发散,所以原级数发散,
Example: prove that
不看前两项(有限项不会影响无穷级数的收敛性),因为且
收敛,因此原级数收敛。
极限比较法 Limit Comparison Test
这个方法是比较判别法推导(作除法)而来:
Definition: suppose that
(a) if
(b) if
(c) if
这三类分类是特意安排的,尤其是
Example: find if
这道题借用p级数的敛散性来解决的。当n足够大时,因此需要找到一个合适的k进行缩放。本题按照标准做法,取
则
![]()
运用(b),因为
收敛,所以原级数收敛。
注意,如果取到一个不合适的值,例如结果就是求不出来了。
极限比较法需要判断两个内容:1、
Example: find if
令![]()
是一个收敛的p级数。
所以原级数收敛。
往期回顾
Jerry:微积分II 积分判别法(The Integral Test) 10.3 (34)
Jerry:微积分II 无穷级数(Infinite Series) 10.2 (33)
Jerry:微积分II 数列(Sequences)和级数(Series) 10.1 (32)
查看更多内容欢迎关注我的专栏。
Reference
Thomas, G., Weir, M., & Hass, J. (2014).Thomas' calculus(Thirteenth ed.).