判断敛散性_微积分II 级数敛散性:比较判别法(Comparison Test) 10.4 (35)

上一章中,利用某些函数能积分的性质,可以应用积分判别法(Integral Tests)判断级数的收敛。现在有一些级数对应的函数不能积分,必须换一种方式来判断。

比较判别法(Comparison Tests)是一种像夹逼定理的判别方法。

比较判别法Comparison Test

The Comparison Test Definition: let

and
be series with
nonnegative terms. Suppose that for some integer
for all

(a) if

converges, then
also converges;

(b) if

diverges, then
also diverges.

这里要注意这个nonnegative(非负)的条件,另外,和积分判别法不同的是,这里的三连不等式是分段判断收敛or发散的,而积分判别法是同时发散or收敛的(如果积分发散,则级数也发散)。刚开始我觉得难以理解。

Example: prove that

diverges.
因为
发散,所以原级数发散,

Example: prove that

converges.
不看前两项(有限项不会影响无穷级数的收敛性),因为
收敛,因此原级数收敛。

极限比较法 Limit Comparison Test

这个方法是比较判别法推导(作除法)而来:

Definition: suppose that

and
for all

(a) if

then
and
both converge or both diverge.

(b) if

and
converges, then
converges.

(c) if

and
diverges, then
diverges.

这三类分类是特意安排的,尤其是

的收敛和发散不能记反(推理一下很简单)。此外,寻找这个关键的
是解题关键点,它必须。

Example: find if

converges.
这道题借用p级数的敛散性来解决的。当n足够大时,
因此需要找到一个合适的k进行缩放。本题按照标准做法,取
运用(b),因为
收敛,所以原级数收敛。

注意,如果取到一个不合适的值,例如
结果就是求不出来了。

极限比较法需要判断两个内容:1、

的值,2、
敛散性(积分判别法或别的简单方法)。这两者不要搞混了,前者求值,后者判断敛散性。另外写题目的时候极限符号别漏了。

Example: find if

converges.
是一个收敛的p级数。
所以原级数收敛。

往期回顾

Jerry:微积分II 积分判别法(The Integral Test) 10.3 (34)

Jerry:微积分II 无穷级数(Infinite Series) 10.2 (33)

Jerry:微积分II 数列(Sequences)和级数(Series) 10.1 (32)

查看更多内容欢迎关注我的专栏。

Reference

Thomas, G., Weir, M., & Hass, J. (2014).Thomas' calculus(Thirteenth ed.).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值