快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
一趟快速排序的算法是:
1)设置两个变量i、j,排序开始的时候:i=0,j=N-1;
2)以第一个数组元素作为关键数据,赋值给key,即key=A[0];
3)从j开始向前搜索,即由后开始向前搜索(j--),找到第一个小于key的值A[j],将A[j]和A[i]互换;
4)从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]互换;
5)重复第3、4步,直到i=j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。
示例
假设用户输入了如下数组:
下标 | 0 | 1 | 2 | 3 | 4 | 5 |
数据 | 6 | 2 | 7 | 3 | 8 | 9 |
创建变量i=0(指向第一个数据), j=5(指向最后一个数据), k=6(赋值为第一个数据的值)。
我们要把所有比k小的数移动到k的左面,所以我们可以开始寻找比6小的数,从j开始,从右往左找,不断递减变量j的值,我们找到第一个下标3的数据比6小,于是把数据3移到下标0的位置,把下标0的数据6移到下标3,完成第一次比较:
下标 | 0 | 1 | 2 | 3 | 4 | 5 |
数据 | 3 | 2 | 7 | 6 | 8 | 9 |
i=0 j=3 k=6
接着,开始第二次比较,这次要变成找比k大的了,而且要从前往后找了。递加变量i,发现下标2的数据是第一个比k大的,于是用下标2的数据7和j指向的下标3的数据的6做交换,数据状态变成下表:
下标 | 0 | 1 | 2 | 3 | 4 | 5 |
数据 | 3 | 2 | 6 | 7 | 8 | 9 |
i=2 j=3 k=6
称上面两次比较为一个循环。
接着,再递减变量j,不断重复进行上面的循环比较。
在本例中,我们进行一次循环,就发现i和j“碰头”了:他们都指向了下标2。于是,第一遍比较结束。得到结果如下,凡是k(=6)左边的数都比它小,凡是k右边的数都比它大:
下标 | 0 | 1 | 2 | 3 | 4 | 5 |
数据 | 3 | 2 | 6 | 7 | 8 | 9 |
如果i和j没有碰头的话,就递加i找大的,还没有,就再递减j找小的,如此反复,不断循环。注意判断和寻找是同时进行的。
然后,对k两边的数据,再分组分别进行上述的过程,直到不能再分组为止。
注意:第一遍快速排序不会直接得到最终结果,只会把比k大和比k小的数分到k的两边。为了得到最后结果,需要再次对下标2两边的数组分别执行此步骤,然后再分解数组,直到数组不能再分解为止(只有一个数据),才能得到正确结果。
过程图:
代码实现:
package algorithm;
import java.util.Arrays;
/**
* 快速排序
*/
public class FastSort {
public static void main(String[] args) {
int A[] = {1,6,9,2,3,1,5,4};
System.out.println(Arrays.toString(A));
quickSort(A,0,7);
System.out.println(Arrays.toString(A));
}
public static void quickSort(int[] A, int left , int right){
if(left < right){
int mid = partion(A , left , right);
quickSort(A , 0 ,mid-1);
quickSort(A , mid+1 , right);
}
}
public static void swap(int[] A, int l, int r){
int tmp = A[l];
A[l] = A[r];
A[r] = tmp;
}
public static int partion(int[] a, int left, int right) {
// 轴值,默认选取数组的第一个数字
while (left < right) {
while (left < right && a[left] <= a[right]) {
right--;
}
if (left<right){
swap(a, left, right);
}
while (left < right && a[left] <= a[right]) {
left++;
}
if (left<right){
swap(a, left, right);
}
}
return left;
}
}
运行结果: