深入学习自动控制原理与实践

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《自动控制原理》是晃勤编著,重庆大学出版社出版的教材,深入讲解了自动控制领域的核心理论和实践知识。这本书详细介绍了自动控制系统的基本概念、分析方法和设计技巧,对于自动化、电子信息、航空航天、机械工程等多个领域的自控学科理论具有重要指导作用。内容包括控制系统定义与分类、数学模型、稳定性分析、响应特性、系统校正、现代控制理论、数字控制、非线性控制系统、系统辨识以及实验与实践等方面,还可能附带图像或图表辅助理解以及电子书使用说明。 自动控制原理;晃勤;重庆大学出版社

1. 自动控制系统的基本概念和分类

1.1 自动控制系统的定义

自动控制系统是由一个或多个控制元件组成的系统,该系统能够自动地调整或控制被控对象的性能,以达到预定的控制目标。这涉及到利用传感器、控制器和执行器来监督和管理机械、电气、热力等过程。自动控制系统在提高生产效率、保证产品质量和安全运行等方面发挥着至关重要的作用。

1.2 自动控制系统的分类方法

按照不同的标准,自动控制系统可以进行多种分类。其中常见的分类包括:

  • 根据控制信号的不同,可以分为模拟控制和数字控制。
  • 根据控制过程的性质,可以分为线性和非线性控制系统。
  • 根据系统的时域特性,可以分为连续时间系统和离散时间系统。
  • 根据系统的稳定性,可以分为稳定系统和不稳定系统。

这些分类有助于我们理解不同自动控制系统的特征和工作方式。

1.3 不同类型的自动控制系统案例分析

接下来,我们将通过几个具体的案例来分析不同类型的自动控制系统:

  • 模拟控制系统案例: 温度控制器,它通过调节加热器和冷却器的功率,维持房间温度在一个设定值附近。
  • 数字控制系统案例: 计算机的CPU风扇速度控制,通过读取CPU的温度传感器数据,自动调节风扇的转速以控制CPU温度。
  • 非线性控制系统案例: 飞行器的飞行控制系统,必须能够处理各种非线性因素,如气动效应和发动机推力变化。
  • 连续时间与离散时间系统案例: 数字PID控制器,它对模拟信号进行采样,然后在一个离散的时间序列上执行控制操作。

通过这些案例的分析,我们可以更深入地理解自动控制系统的实际应用场景和工作原理。

2. 控制系统数学模型的构建与分析

2.1 控制系统数学模型的基本构建方法

在自动控制系统领域中,数学模型是理解和分析系统行为的关键。构建数学模型的目的是为了用数学语言描述系统的工作原理和动态特性。

2.1.1 连续时间系统的数学模型

对于连续时间系统,通常采用微分方程来描述系统的动态行为。这类模型可以精确地表示系统在任意时间点的状态。例如,一个简单的弹簧-质量-阻尼系统可以用如下的二阶微分方程来描述:

m * x''(t) + c * x'(t) + k * x(t) = F(t)

其中, m 是质量, c 是阻尼系数, k 是弹簧刚度, x(t) 是位移, F(t) 是作用力。

构建这类模型需要理解系统的物理背景,并将实际问题转化为数学表述。参数识别和模型验证是这一过程中的重要步骤。

2.1.2 离散时间系统的数学模型

离散时间系统,如数字控制系统,通常使用差分方程来建模。差分方程可以通过对连续系统进行采样或直接从系统的离散行为中推导出来。例如,一个简单的离散时间系统可以用以下一阶差分方程表示:

x[k+1] = a * x[k] + b * u[k]

这里, x[k] 是在第 k 步的系统状态, u[k] 是输入, a b 是系统参数。与连续模型类似,离散模型也需要通过实验数据来验证其准确性。

2.2 数学模型的线性化处理

2.2.1 非线性系统线性化的必要性

在工程实践中,很多实际系统都是非线性的。然而,线性系统理论相对成熟,且容易分析和设计。因此,将非线性系统近似为线性系统,可以简化分析和控制器设计的过程。

2.2.2 线性化方法的应用实例

一种常见的线性化方法是使用泰勒级数展开,然后保留一阶项。考虑一个非线性系统:

x' = f(x) + g(x) * u

其中, f(x) g(x) 是关于 x 的非线性函数。在平衡点附近,可以用 x = x_0 f(x) g(x) 进行泰勒级数展开,并保留一阶项,从而得到近似的线性模型。

2.3 数学模型的验证和实验

2.3.1 数学模型验证的方法论

数学模型的验证通常包括仿真测试和实验测试。通过仿真,可以在计算机上模拟系统响应,验证模型的准确性。而实验测试则需要在实际系统上进行,这需要设计合适的实验方案,并进行数据采集和分析。

2.3.2 实验设计与数据分析

实验设计包括确定实验条件、选择适当的测量设备和方法、以及设置合理的测试步骤。数据分析则是通过统计方法来评估模型预测的准确性和可靠性。

使用如下的 Python 代码段进行简单的模型验证实验设计:

import numpy as np
import matplotlib.pyplot as plt

# 假设的系统响应函数
def system_response(input_signal):
    return np.sin(input_signal)

# 设计输入信号
t = np.linspace(0, 2*np.pi, 100)
input_signal = np.sin(t)

# 生成系统响应数据
output_data = system_response(input_signal)

# 绘制输入信号和输出响应
plt.figure(figsize=(10, 4))
plt.plot(t, input_signal, label='Input Signal')
plt.plot(t, output_data, label='Output Response', linestyle='--')
plt.legend()
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.title('System Response Test')
plt.show()

上述代码段中,我们设计了一个正弦波作为输入信号,将其通过一个假设的系统,并将输入信号和输出响应进行了可视化。通过比较输入和输出,可以对模型的有效性进行初步评估。

3. 系统稳定性分析的理论与实践

在现代控制系统设计中,稳定性分析是保证系统可靠运行的关键环节。一个稳定的系统意味着对于任何小的初始扰动或输入变化,系统的输出最终会回到其平衡状态。本章节将深入探讨系统稳定性的理论基础、分析工具以及在实际中的应用。

3.1 系统稳定性的基本理论

3.1.1 稳定性的定义和判定标准

系统稳定性通常根据其在时间演进下的行为来定义。对于一个线性时不变系统,如果所有的输入信号(无论多大)都产生有界的输出信号,则称该系统是BIBO(有界输入/有界输出)稳定的。对于非线性系统,稳定性可能涉及到更复杂的动态行为,如渐进稳定性和全局稳定性等。

判定系统稳定性的方法很多,例如: - 劳斯稳定判据 :利用系统特征方程的系数来判断连续时间系统的稳定性。 - 赫尔维茨判据 :通过构造赫尔维茨矩阵来判断离散时间系统的稳定性。 - 李雅普诺夫方法 :通过构造一个能量函数(李雅普诺夫函数)来分析系统状态的变化趋势。

3.1.2 稳定性分析的经典方法

稳定性分析的经典方法中,最为广泛使用的是李雅普诺夫第二方法,该方法提供了一种系统性的手段来分析非线性系统的稳定性。李雅普诺夫方法的核心思想是构造一个标量函数(能量函数),通过分析该函数随时间变化的趋势来判断系统稳定性。函数在某个区域内是正定的,并且随时间减少,则系统在该区域内是渐进稳定的。

3.2 系统稳定性的分析工具

3.2.1 频率响应法和根轨迹法

  • 频率响应法 :通过分析系统开环频率响应来判断闭环系统的稳定性,通常与奈奎斯特稳定判据结合使用。
  • 根轨迹法 :能够直观地描绘出系统极点随某个参数变化时的轨迹,从而分析系统的稳定性和动态性能。

3.2.2 数值分析法在稳定性分析中的应用

随着计算机技术的发展,数值分析方法在稳定性分析中的应用日益增加。通过使用数值仿真软件,如MATLAB的Simulink工具箱,可以模拟系统的动态行为,并使用时域仿真结果来评估系统稳定性。

3.3 系统稳定性分析的案例研究

3.3.1 实际控制系统稳定性问题的解决

在解决实际控制系统稳定性问题时,工程人员通常会结合理论分析和实际测试。通过仿真和实验,逐步调整系统参数,直到满足稳定性要求。例如,对于飞行控制系统,通过调整控制参数来确保飞机的稳定飞行,包括在各种极端天气条件下的稳定性。

3.3.2 稳定性分析在工程实践中的应用

稳定性分析不仅是理论研究的重点,也是工程实践中不可或缺的一部分。在设计阶段,工程师需要确保设计的系统满足稳定性要求。在系统运行过程中,也需要进行实时监控,一旦检测到系统可能失稳,应立即采取措施。

表格:不同稳定性分析方法的对比

| 分析方法 | 适用范围 | 优点 | 缺点 | | -------------- | -------------------- | ----------------------------- | --------------------------- | | 劳斯稳定判据 | 连续时间系统 | 简单易行,无需绘制根轨迹 | 只适用于线性系统 | | 李雅普诺夫方法 | 非线性系统 | 可用于分析非线性系统稳定性 | 需要构造合适的李雅普诺夫函数 | | 数值分析法 | 复杂或非线性系统 | 可以处理复杂系统,模拟实际条件 | 计算量大,对初始条件和模型误差敏感 |

代码块:使用MATLAB进行系统稳定性分析

% 示例代码:使用MATLAB的Nyquist命令绘制系统开环频率响应
% 定义开环传递函数
num = [10]; % 分子多项式系数
den = [1, 10, 100]; % 分母多项式系数
sys_open = tf(num, den); % 创建开环传递函数模型

% 绘制Nyquist图
figure; nyquist(sys_open);
grid on;

% 判断稳定性
if nyquist(sys_open) > 1
    disp('系统不稳定');
else
    disp('系统稳定');
end

代码逻辑分析

在上述MATLAB代码中,我们首先定义了一个简单的开环传递函数 sys_open 。通过 nyquist 函数绘制出该系统的Nyquist图,并通过判断Nyquist曲线是否包围点 (-1, 0) 来判断系统的稳定性。如果曲线包围该点,则表示系统至少有一个闭环极点位于右半平面,系统不稳定。否则,系统是稳定的。

参数说明

  • num den 分别表示开环传递函数的分子和分母多项式系数。
  • tf 函数用于从多项式系数创建传递函数模型。
  • nyquist 函数用于绘制系统的Nyquist图。
  • nyquist(sys_open) > 1 用于检查曲线是否包围了 (-1, 0) 这个点。

通过本章节的介绍,我们可以看到系统稳定性分析的重要性,并深入理解了各种分析工具的使用。下一章节将继续探讨系统响应特性的深入探讨,进一步加深对控制系统性能优化的理解。

4. 系统响应特性的深入探讨

4.1 系统时域响应分析

在控制系统的设计与分析中,时域响应分析是一个重要环节,它能够提供系统在受到输入信号激励后随时间变化的响应特性。通过观察系统在时域内的反应,工程师能够了解系统的过渡过程和稳态过程的特征,并据此判断系统的性能是否满足设计要求。

4.1.1 过渡过程和稳态过程的特征

过渡过程通常指系统受到外部输入作用后,从初始状态到达稳态之前的一段时间内的动态响应。在这个过程中,系统的输出会显示出振荡、超调、上升时间等特征。例如,一个二阶系统可能会出现振铃现象或过冲,这些现象是由系统自然频率和阻尼比所决定的。稳态过程则是系统响应稳定下来之后的表现,通常关注其稳态误差,即系统输出与期望值之间的差距。

分析过渡过程和稳态过程的特征,需要构建系统的数学模型,并使用拉普拉斯变换等数学工具进行分析。例如,使用阶跃响应和冲击响应来分析系统的动态特性。

4.1.2 影响系统时域响应的因素

系统时域响应会受到多种因素的影响,包括系统的初始条件、输入信号的类型(阶跃、斜坡、加速度等)、系统的参数(如增益、时间常数)以及系统的结构(串联、并联、反馈等)。例如,在一个简单的比例-积分-微分(PID)控制系统中,比例增益、积分时间、微分时间这三个参数的不同取值将直接影响系统的时域响应特性。

为准确分析这些影响因素,工程师通常会借助时域响应图谱,如阶跃响应曲线图,来直观比较不同参数设置下的系统性能。

4.2 系统频域响应分析

频域响应分析则是通过观测系统在不同频率的输入信号下的反应,来判断系统的稳定性和性能指标。频域响应提供了对系统频率特性的重要信息,这对于理解系统的频率选择性和抗干扰能力是至关重要的。

4.2.1 频域响应的特性指标

频域响应分析中最基本的特性指标包括增益裕度和相位裕度。增益裕度表示系统增益增加到1时,系统的相位差多少角度;而相位裕度表示系统相位达到-180度时,增益减少多少分贝。这些指标直接关联到系统的稳定性和响应速度。

除了增益和相位裕度外,频域响应中的谐振峰和带宽也是重要指标。谐振峰高度可以反映系统对特定频率的敏感程度,带宽则决定了系统的动态响应范围。

4.2.2 频域分析在控制系统设计中的应用

在控制系统设计中,频域分析被用于设计鲁棒性高的系统。工程师会使用Bode图或Nyquist图等频域工具,来设计控制器参数以满足特定的性能标准。例如,为达到快速响应同时避免振荡,设计师会仔细调整系统的增益和相位裕度。

频域分析还可以用在滤波器设计和噪声抑制等方面,通过在特定频率范围内抑制或增强信号,以改善系统整体的性能。

4.3 响应特性优化的方法

为了提升系统的性能,常常需要对系统的响应特性进行优化。这包括减少系统的过渡时间和稳态误差,提高系统的稳定性和抗干扰能力等。

4.3.1 响应特性优化的策略与方法

响应特性优化可以从多个角度来考虑。首先,可以通过调整控制器的参数来优化系统响应。例如,在PID控制器中,通过调整比例、积分、微分三个参数来改善响应特性。其次,可以引入更复杂的控制算法,如模糊控制或神经网络控制,来提高系统对复杂环境的适应性。

4.3.2 实际案例中的响应特性优化实践

在实际应用中,响应特性优化需要结合具体案例来分析和实现。例如,一个机器人控制系统可能需要优化其位置控制的响应,通过引入状态反馈和观测器,可以提高位置控制的准确性和响应速度。具体的优化策略通常包括对控制器参数的微调、使用先进的控制算法和实施硬件升级。

下面是一个简化的例子,展示如何通过修改PID控制器参数来优化系统时域响应。

import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import lti, step

# 定义一个简单的PID控制器
def pid_controller(Kp, Ki, Kd, time):
    # 传递函数:Kp + Ki/s + Kd*s
    s = np.array([0, 1j * np.pi / time, -1j * np.pi / time])
    num = Kp + Ki * s[1] + Kd * s[2]
    den = np.ones_like(s)
    return lti(num, den)

# 定义系统时间参数
t = np.linspace(0, 2, 200)

# 创建几个不同的PID参数组合
pid1 = pid_controller(1, 0, 0)
pid2 = pid_controller(1, 0.5, 0)
pid3 = pid_controller(1, 0.5, 0.1)

# 分析不同PID参数的阶跃响应
y1, t1 = step(pid1, T=t)
y2, t2 = step(pid2, T=t)
y3, t3 = step(pid3, T=t)

# 绘制阶跃响应图
plt.figure(figsize=(10, 6))
plt.plot(t1, y1, label='Kp=1, Ki=0, Kd=0')
plt.plot(t2, y2, label='Kp=1, Ki=0.5, Kd=0')
plt.plot(t3, y3, label='Kp=1, Ki=0.5, Kd=0.1')
plt.title('PID Controller Step Responses')
plt.xlabel('Time [s]')
plt.ylabel('Response')
plt.legend()
plt.grid(True)
plt.show()

在上述代码中,我们定义了一个简单的一阶系统,并通过不同参数的PID控制器来观察系统的阶跃响应。通过对比不同控制器参数对系统响应的影响,我们可以选择一个最优的PID参数组合来优化系统性能。

通过上述的章节内容,我们可以看到系统响应特性分析在控制系统设计和优化中的重要性,以及针对不同应用领域进行系统特性分析和调整的方法。

5. 控制系统校正方法及其应用

5.1 控制系统校正的基本概念

5.1.1 校正的目的和意义

控制系统校正是提高系统性能、确保系统稳定运行的重要步骤。校正的目的在于调整控制系统参数,以满足特定的性能指标,如更快的响应速度、更小的超调量、更佳的抗干扰能力和更好的稳态精度等。

在实际应用中,控制系统校正的步骤包括确定系统的性能要求、进行系统建模、设计控制器以及实施校正策略。校正的过程可能会涉及到多个控制环路,如位置控制、速度控制和加速度控制等。

5.1.2 常见的控制系统校正方法

控制系统校正方法有多种,包括但不限于比例-积分-微分(PID)校正、相位超前校正、相位滞后校正和滞后-超前校正等。

  • PID 控制器 是最常见的控制策略之一,它通过比例(P)、积分(I)和微分(D)三种控制作用相结合,来实现对系统的快速、准确和稳定的控制。
  • 相位超前校正 通常用于提高系统的响应速度和稳定性,尤其是在系统相位滞后较大的情况下。
  • 相位滞后校正 则主要用于改善系统的稳定性,特别是对于那些高频部分增益过高的系统。
  • 滞后-超前校正 是结合了上述两种校正技术,通过在低频处增加滞后而在高频处增加超前,来综合改善系统性能。

5.2 校正技术的实施步骤

5.2.1 校正方案的制定

制定校正方案是实施控制系统校正的重要一步。这通常包括以下内容:

  1. 性能需求分析 :明确系统的性能指标,如响应时间、稳态误差、抗干扰能力等。
  2. 系统建模 :根据控制系统的基本结构和物理参数,建立相应的数学模型。
  3. 设计校正网络 :选择合适的校正方法,并设计控制网络以满足性能要求。
  4. 仿真验证 :使用计算机仿真工具进行预校正测试,确保校正方案的可行性和有效性。
  5. 现场调试 :在实际系统中实施校正策略,并进行现场调试,以获取最佳性能。

5.2.2 校正过程中的关键技术和注意事项

在校正过程中,需要注意以下几个关键技术点:

  • 稳定性分析 :在实施校正前,必须保证系统在加入校正环节后仍然保持稳定。
  • 参数调整 :校正参数的选取是影响系统性能的关键,通常需要结合经验、试验和仿真来确定。
  • 超调量与响应时间的权衡 :系统响应速度的提升往往以增加超调量为代价,因此需要合理平衡两者。
  • 抑制干扰 :校正策略应考虑系统的抗干扰能力,确保在环境变化和外部干扰下系统的稳定性。

5.3 校正技术在不同领域的应用

5.3.1 工业自动控制系统中的校正应用

在工业自动控制系统中,控制系统校正技术被广泛应用。以PID校正为例,它可以改善温度控制系统、流量控制系统、压力控制系统等的性能。通过调整PID参数,可以有效提高系统对设定值的追踪能力,减少稳态误差,同时快速响应外部扰动,提高系统的整体运行效率和可靠性。

5.3.2 校正技术在航空航天领域的应用

在航空航天领域,控制系统校正同样不可或缺。例如,在飞行控制系统中,校正技术用于提高飞机的姿态控制精度、增加系统的稳定性,以及提升对不同飞行条件的适应能力。

控制系统校正方法的多样化和高性能化,使得飞机、卫星和宇宙飞船能够在复杂多变的环境下保持稳定和精确的飞行状态。校正技术的应用不仅限于提高控制性能,还涉及到系统的安全性和可靠性,这对于确保宇航员生命安全和飞行器的成功执行任务至关重要。

graph TD;
    A[控制系统校正需求分析] --> B[系统建模与分析]
    B --> C[设计校正策略]
    C --> D[仿真验证校正效果]
    D --> E[现场调试和参数调整]
    E --> F[控制系统校正完成]

在上述流程图中,我们展示了控制系统校正的一般流程。从需求分析到最终完成校正,每个步骤都是环环相扣的,需要精心设计和细致执行。

以PID控制器的校正为例,一个典型的校正过程可能包括以下步骤:

  1. 确定PID控制器的性能指标 ,如设定时间、超调量和稳态误差等。
  2. 选择合适的PID参数 ,通常采用试错法、Ziegler-Nichols方法或Cohen-Coon方法等。
  3. 执行仿真测试 ,以验证所选参数是否满足性能要求。
  4. 在实际系统中进行微调 ,在测试过程中观察系统响应,并根据实际表现调整PID参数。
  5. 完成校正 ,并定期进行检查以确保系统在长期运行中性能稳定。

通过本章节的介绍,我们深入了解了控制系统校正的概念、实施步骤以及在不同领域的应用案例。校正技术是确保控制系统稳定、高效运行的关键,它的正确实施对于任何自动化系统来说都是至关重要的。

6. 现代控制理论的应用与展望

6.1 现代控制理论的核心概念

现代控制理论的兴起与传统控制理论相比,为控制系统的设计和分析提供了更为强大的工具和方法。现代控制理论的一个核心概念是状态空间模型,它为描述和分析线性及非线性系统提供了一个统一框架。

6.1.1 状态空间模型与现代控制理论

状态空间模型使用一组一阶微分方程来描述系统的动态行为,可以表示为:

\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}

其中,( x(t) ) 是系统状态向量,( u(t) ) 是输入向量,( y(t) ) 是输出向量,( A, B, C, D ) 是系统矩阵,它们代表了系统的动态特性和输入输出关系。

状态空间模型不仅可以用于系统的稳定性分析,还可以用于系统设计,如状态反馈控制器和观测器的设计。

6.1.2 鲁棒控制和最优控制的基本原理

鲁棒控制关注于设计控制系统,使其能够对模型不确定性和外部干扰具有抵抗力,而最优控制则关注于找到系统性能指标的最优解。

  • 鲁棒控制:通过设计一个控制器,使得系统即使在存在未建模动态或参数变化的情况下,也能保持稳定性和性能。H∞ 控制是鲁棒控制中常见的设计方法。
  • 最优控制:通过解决一个成本函数最小化或性能指标最大化的问题来设计控制器。LQR(线性二次调节器)是解决最优控制问题的常用方法之一。

6.2 现代控制理论的工程实践

现代控制理论在工程实践中的应用越来越广泛,特别是在复杂的多变量系统和高性能系统中。

6.2.1 应用现代控制理论的案例分析

多变量系统,如飞行器的自动驾驶仪设计,可以使用状态反馈控制和观测器来实现精确的航向控制。通过状态空间模型,工程师能够更好地理解系统动态并设计出满足特定性能要求的控制器。

6.2.2 现代控制理论在复杂系统中的应用挑战

复杂系统,如电力网络或工业自动化系统,由于其规模和内在的非线性特性,对控制理论的应用提出了挑战。现代控制理论在这些领域中的应用需要考虑模型的精确性、计算的复杂性以及实时性能的限制。

6.3 控制理论的发展趋势与未来展望

随着科技的进步,控制理论与人工智能、大数据等领域的融合促进了新的研究方向和应用的发展。

6.3.1 人工智能与控制理论的融合发展

人工智能尤其是机器学习的算法,正在被用来改善控制系统的设计和性能。例如,通过机器学习算法可以自动地进行系统建模、控制器设计以及在线调优,这显著地减少了设计复杂控制系统的工程师的工作量。

6.3.2 智能控制技术的新方向与展望

智能控制技术正向着更加自主、适应性强的方向发展。这包括自适应控制、预测控制、强化学习控制等。未来,我们有望看到这些技术在自动化、机器人技术、智能制造等领域的广泛应用,进一步推动控制理论的发展与实践。

随着控制理论的不断演化,我们可以预期它将在解决现实世界中的复杂问题中扮演更加重要的角色,并推动自动化技术的发展达到新的高度。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《自动控制原理》是晃勤编著,重庆大学出版社出版的教材,深入讲解了自动控制领域的核心理论和实践知识。这本书详细介绍了自动控制系统的基本概念、分析方法和设计技巧,对于自动化、电子信息、航空航天、机械工程等多个领域的自控学科理论具有重要指导作用。内容包括控制系统定义与分类、数学模型、稳定性分析、响应特性、系统校正、现代控制理论、数字控制、非线性控制系统、系统辨识以及实验与实践等方面,还可能附带图像或图表辅助理解以及电子书使用说明。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值