Qwen3+Qwen Agent 智能体开发实战,打开大模型MCP工具新方式!(一)

系列文章目录

一、Qwen3+Qwen Agent 智能体开发实战,打开大模型MCP工具新方式!(一)

二、Qwen3+Qwen Agent +MCP智能体开发实战(二)—10分钟打造"MiniManus"


前言

要说最近人工智能界最火热的开源大模型,必定是阿里发布不久的Qwen3系列模型。Qwen3模型凭借赶超DeepSeek-V3/R1的优异性能,创新的混合推理模式,以及极强的MCP能力迅速成为AI Agent开发的主流基座模型。大家可参考我的文章一文解析Qwen3大模型详细了解Qwen3模型的核心能力。有读者私信我: “Qwen3官网特地强调增强了Agent和代码能力,同时加强了对MCP的支持,那么我该如何利用Qwen3快速开发MCP应用呢?” 这就就需要使用我们今天的主角——Qwen官方推荐的开发工具Qwen-Agent ,本期分享我们就一起学习快速使用Qwen3+QwenAgent 接入MCP服务端,快速开发AI Agent应用!

一、注册 Qwen3 API-Key

本次分享通过阿里云百炼大模型服务平台API Key请求方式调用Qwen3大模型,获取服务平台API Key的步骤如下:

  1. 登录阿里云百炼大模型服务平台,如果页面顶部显示如下消息,大家需要开通百炼的模型服务,点击立即开通即可。

在这里插入图片描述

  1. 前往 我的API-KEY页面,单击创建我的API-KEY。
  2. 在已创建的API Key操作列,单击查看,获取API KEY。该API KEY是我们请求Qwen3大模型的重要凭证。

在这里插入图片描述

二、Qwen-Agent快速入门

2.1 Qwen-Agent简介

Qwen-Agent 是阿里通义团队推出的开源智能体(Agent)开发框架,基于 Qwen 大语言模型(LLM)构建,旨在帮助开发者快速构建具备指令遵循、工具调用、规划与记忆等能力的 AI 应用。它提供了从底层原子组件到高级智能体抽象的完整开发工具链,适用于多种复杂任务场景。
在这里插入图片描述
Qwen-Agent具备如下核心特性:

  • 更强的工具调用(Function Calling)能力:框架支持智能体自动调用外部工具或函数,包括内置的代码解释器、浏览器助手等,也支持开发者自定义工具,扩展智能体的能力。
  • 便捷的MCP工具接入流程:最新版的Qwen-Agent已经集成了MCP工具接入流程,我们仅需写入MCP配置,即可在Qwen-Agent中调用MCP工具:
  • 规划与记忆能力: 智能体具备任务规划能力,能够根据用户需求自动制定执行步骤。同时,具备上下文记忆功能,能在对话中保持状态,提供连贯的交互体验。
  • 长文本处理与 RA: Qwen-Agent 集成了检索增强生成(RAG)机制,支持处理从 8K 到 100 万 tokens 的长文档,通过文档分块和相关性检索,提升上下互与展示
  • UI前端交互与展示

2.2 Qwen-Agent 构建多轮对话机器人

Qwen-Agent具备快速接入Qwen系列模型能力,通过Assistant组件,可以实现工具调用、Agent编排和MCP接入等一系列功能。下面通过使用Qwen-Agent开发多轮对话机器人的小案例让大家快速掌握Qwen-Agent的使用方法。完整代码在: https://www.codecopy.cn/post/q1vq4b

  1. 安装相关软件,这里使用anaconda创建虚拟环境并安装相关库,对anaconda使用有疑问的可参照anaconda安装和使用(管理python环境看这一篇就够了)
conda create -n qwen_agent python=3.12
pip install -U "qwen-agent[rag,code_interpreter,gui,mcp]"
pip install uv
  1. 导入需要的类和函数, Assistant是用来创建智能体对象的类, typewriter_print用于格式化和打印消息,会处理函数调用和普通对话的不同执行逻辑(Function Calling),同时对于推理类模型,会判断消息中是否包含 reasoning_content,如果存在,则将其添加到 content 列表中,并在前面加上 THOUGHT_S(表示思考的符号或字符串),从而支持推理类模型和对话模型的不同输入输出形式。
from qwen_agent.agents import Assistant
from qwen_agent.utils.output_beautify import typewriter_print
  1. 配置所使用的模型服务, 注意api_key填入你在百炼平台注册的api_key
llm_cfg={
    'model': 'qwen3-235b-a22b', #可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
    'model_server': 'dashscope',
    'api_key': '你注册的api-key',
    'generate_cfg':{
        'top_p': 0.8 # top_p越高生成的文本越多样, 范围在0-1.0之间
    }
}
  1. 创建一个智能体对象
bot = Assistant(
    llm=llm_cfg,
    system_message='你是一位乐于助人的小助理',
    name='智能助理'
)
  1. 构建多轮对话聊天
messages = [] #存储历史聊天内容
while True:
    query = input('\n用户请求:输入 quit 终止对话')
    if query == 'quit':
        break
    else:
        messages.append({
            'role': 'user',
            'content': query
        })

        response = []
        response_plain_text = ''

        print('AI 回复:')
        for response in bot.run(messages=messages):
            response_plain_text = typewriter_print(response, response_plain_text)

        messages.extend(response)

执行如上代码结果如下,可以看到我们已经成功开启与qwen3模型的对话~

在这里插入图片描述

三、Qwen-Agent接入MCP工具

3.1 项目简介

熟悉Qwen-Agent的基本操作后,下一步开始学习今天的重头戏——Qwen-Agent接入MCP工具。大家不了解MCP相关概念的可先阅读我的MCP系列分享:

Qwen-Agent接入MCP的原理采用stdio开发模式,将mcp服务作为Qwen-Agent应用的子进程, Qwen-Agent作为客户端与子进程服务通信。

本次分享采用Qwen-Agent+Qwen3开发一个sqlite数据库小助手,Qwen-Agent接入mcp-server-sqliteMCP服务器,能够理解自然语言并依据语言内容调用mcp-server-sqlite服务端的功能函数完成对sqlite数据库的相关操作。

3.2 Qwen-Agent接入mcp-server-sqlite

完整代码在https://www.codecopy.cn/post/fum1go

  1. 导入相关包并初始化Assistant类,同时接入mcp-server-sqliteMCP服务端, 接入mcp的流程需要先定义一个tools数组存放json schema格式的mcp服务器配置,和我们在不写一行代码! VsCode+Cline+高德地图MCP Server 帮你搞定和女友的出行规划(附原理解析)中mcp的配置文件类似。
from qwen_agent.agents import Assistant
from qwen_agent.utils.output_beautify import typewriter_print

def init_agent_service():
    llm_cfg={
        'model': 'qwen3-235b-a22b',
        'model_server': 'dashscope',
        'api_key': '你的api_key',
        'generate_cfg':{
            'top_p': 0.8
        }
    }

    # 定义MCP服务配置,优点类似Function Calling调用的JSON Schema格式
    tools = [{
        "mcpServers": {
            "sqlite": {
                "command": "uvx",
                "args": [
                    "mcp-server-sqlite",
                    "--db-path",
                    "test.db"
                ]
            }
        }
    }]

    bot = Assistant(
        llm=llm_cfg,
        name='数据库管理员',
        description='你是一位数据库管理员,具有对本地数据库的增删改查能力',
        system_message='你扮演一个数据库助手,你具有查询数据库的能力',
        function_list=tools,
    )

    return bot
  1. 定义数据库助手,并构造提示词让Qwen-Agent帮助我们创建一个学生表并添加一些数据。
def run_query(query=None):
    # 定义数据库助手
    bot = init_agent_service()

    # 执行对话逻辑
    messages = []
    messages.append({'role': 'user', 'content': [{'text': query}]})

    # 跟踪前一次的输出,用于增量打印
    previous_text = ""

    print('数据库管理员: ', end='', flush=True)

    for response in bot.run(messages):
        previous_text = typewriter_print(response, previous_text)

if __name__ == '__main__':
    query = '帮我创建一个学生表,表名是students,包含id, name, age, gender, score字段,然后插入一条数据,id为1,name为张三,age为20,gender为男,score为95'
    run_query(query)

执行代码得到如下结果, uvx检测到有些依赖库没有安装,自动安装所需依赖(红字部分)。完成相关依赖安装后Qwen-Agent检测到用户请求中要创建学生表并插入数据,Qwen3模型对mcp-server-sqlite服务端的函数理解生成思考过程,利用sqlite-create_table创建表,并使用sqlite-write_query插入数据。

在这里插入图片描述

  1. 执行完程序发现本地目录下多了名为test.db的数据库文件。

为进一步验证工具调用的正确性,我们使用sqlite3数据库工具查看数据库中的数据,在test.db同级目录下新建py文件并写入如下代码:

在这里插入图片描述

# 查看数据库中的数据
import sqlite3

conn = sqlite3.connect('test.db')
cursor = conn.cursor()

# 先查看数据库中有哪些表
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = cursor.fetchall()
print("数据库中的表:", tables)

# 如果有表,则查询第一个表的数据
if tables:
    table_name = tables[0][0]
    cursor.execute(f"SELECT * FROM {table_name}")
    print(f"{table_name} 表中的数据:", cursor.fetchall())
else:
    print("数据库中没有表,需要先创建表并插入数据")

conn.close()

在这里插入图片描述

可以看到Qwen-Agent成功创建了数据表并插入了数据。以上就是我们今天的分享,怎么样Qwen-Agent的能力是不是特别强大?还在等什么,赶紧利用Qwen-Agent开发属于你的AI Agent吧!

四、总结

本篇分享介绍了如何利用阿里发布的Qwen3系列大模型和Qwen-Agent工具快速接入MCP服务端并开发AI Agent智能体。主要内容包括:

  1. 注册Qwen3 API-Key:通过阿里云百炼平台获取API密钥。
  2. Qwen-Agent入门:介绍了Qwen-Agent核心功能(工具调用、MCP接入、规划与记忆等),并演示了如何构建多轮对话机器人。
  3. 接入MCP工具:以SQLite数据库助手为例,展示了如何配置MCP服务端,实现自然语言操作数据库的功能。

当然这篇分享只是简单的Qwen3+Qwen-Agent+MCP智能体开发案例,别忘了Qwen-Agent 出色的前端交互展示能力我们还没有利用。别着急,下一篇分享我将和大家一起利用Qwen Agent能力复现Qwen3官方网站上自动搜索github数据并生成统计信息的可视化智能体,让你在超短时间内实现一个“Manus”!感兴趣大家点个关注吧。大家也可关注我的同名微信公众号:大模型真好玩,免费分享工作生活中大模型开发教程和资料~

在这里插入图片描述

### 如何在 IntelliJ IDEA 中配置和使用 Swagger #### 添加 Maven 依赖 为了使 Swagger 能够工作,在 `pom.xml` 文件中需加入特定的依赖项。这可以通过编辑项目的构建文件来完成: ```xml <dependencies> <!-- swagger2 --> <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swagger2</artifactId> <version>2.8.0</version> </dependency> <!-- swagger ui --> <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swagger-ui</artifactId> <version>2.8.0</version> </dependency> </dependencies> ``` 这些依赖会引入必要的库用于生成 API 文档以及提供交互式的 UI 页面[^4]。 #### 创建 Swagger 配置类 接着创建的 Java 类用来初始化并配置 Swagger 实例。通常命名为类似于 `SwaggerConfig.java` 的名称,并放置于合适的位置,比如 `config` 包内: ```java import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import springfox.documentation.builders.ApiInfoBuilder; import springfox.documentation.service.ApiInfo; import springfox.documentation.spi.DocumentationType; import springfox.documentation.spring.web.plugins.Docket; @Configuration public class SwaggerConfig { @Bean public Docket api() { return new Docket(DocumentationType.SWAGGER_2) .apiInfo(apiInfo()) .select() .build(); } private ApiInfo apiInfo(){ return new ApiInfoBuilder().title("API文档").description("").termsOfServiceUrl("") .contact(new Contact("", "", "")) .license("").licenseUrl("").version("1.0") .build(); } } ``` 这段代码定义了个 Spring Bean 来设置 Swagger 的基本信息和其他选项。 #### 启动应用测试 当上述步骤完成后,启动应用程序即可访问默认路径 `/swagger-ui.html` 查看自动生成的 RESTful 接口文档界面。通过浏览器打开该链接可以浏览到所有已暴露出来的 HTTP 请求方法及其参数说明等信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值