基于python的证件照_用20行python代码给证件照换底色

imread:读取图片;

imshow:展示图片;

waitkey:设置窗口等待,如果不设置,窗口会一闪而过;

imread:读取图片;

imshow:展示图片;

waitkey:设置窗口等待,如果不设置,窗口会一闪而过;

importnumpy asnp

# 读取照片

img=cv2.imread( 'girl.jpg')

# 显示图像

cv2.imshow( 'img',img)

# 窗口等待的命令,0表示无限等待

cv2.waitKey( 0)

效果如下:

62f5c83b0f340282bc8de4f7adace71b.png

3.图片缩放

resize:图片缩放,其中fx和fy表示缩放比例,0.5表示缩放为以前的 一半。

resize:图片缩放,其中fx和fy表示缩放比例,0.5表示缩放为以前的 一半。

importnumpy asnp

# 读取照片

img=cv2.imread( 'girl.jpg')

# 图像缩放

img = cv2.resize(img, None,fx= 0.5,fy= 0.5)

rows,cols,channels = img.shape

print(rows,cols,channels)

# 显示图像

cv2.imshow( 'img',img)

# 窗口等待的命令,0表示无限等待

cv2.waitKey( 0)

结果如下:

f971148288d7190bbf3422df6714a9aa.png

4.将图片转换为灰度图像

三色图片有RGB三个颜色通道,无法进行腐蚀和膨胀的操作。这个就需要我们将彩色图片转换为hsv灰度图像后,再完成腐蚀和膨胀的操作。

cv2.cvtColor(img,cv2.COLOR_BGR2HSV)可以将彩色图片转化为hsv灰度图片。

cv2.cvtColor(img,cv2.COLOR_BGR2HSV)可以将彩色图片转化为hsv灰度图片。

importnumpy asnp

# 读取照片

img=cv2.imread( 'girl.jpg')

# 图像缩放

img = cv2.resize(img, None,fx= 0.5,fy= 0.5)

rows,cols,channels = img.shape

print(rows,cols,channels)

cv2.imshow( 'img',img)

# 图片转换为二值化图

hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

# 显示图像

cv2.imshow( 'hsv',hsv)

# 窗口等待的命令,0表示无限等待

cv2.waitKey( 0)

结果如下:

7f2d63774496e346f6f3e70765bc14d1.png

5.将图片进行二值化处理

二值化处理是为了将图片转换为黑白图片。二值化类似于1表示男、2表示女,对于图像的处理我们也需要自定义一个最小值和最大值,这里分别用lower_blue和upper_blue表示

lower_blue = np.array([90,70,70])

upper_blue = np.array([110,255,255])

inRange(hsv, lower_blue, upper_blue)将图片进行二值化操作。

lower_blue = np.array([90,70,70])

upper_blue = np.array([110,255,255])

inRange(hsv, lower_blue, upper_blue)将图片进行二值化操作。

importnumpy asnp

# 读取照片

img=cv2.imread( 'girl.jpg')

# 图像缩放

img = cv2.resize(img, None,fx= 0.5,fy= 0.5)

rows,cols,channels = img.shape

print(rows,cols,channels)

cv2.imshow( 'img',img)

# 图片转换为灰度图

hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

cv2.imshow( 'hsv',hsv)

# 图片的二值化处理

lower_blue = np.array([ 90, 70, 70])

upper_blue = np.array([ 110, 255, 255])

mask = cv2.inRange(hsv, lower_blue, upper_blue)

# 显示图像

cv2.imshow( 'mask',mask)

# 窗口等待的命令,0表示无限等待

cv2.waitKey( 0)

结果如下:

b4a25c4ec71b10835e48fbc36c6fc3d8.png

缺点: 我们观察第三章图片,发现黑色区域有时候会出现一些噪声(白点),这里可能显示的不是很明显,有的图片显示的很明显,这就需要我们进行腐蚀或膨胀。

6.图象的腐蚀和膨胀

上面的图象进行二值化后,出现了一些噪声,我们可以采用腐蚀或膨胀进行图片的处理,观察哪种的处理效果好一些。

erode(mask,None,iterations=1)进行腐蚀操作。

dilate(erode,None,iterations=1)进行膨胀操作。

erode(mask,None,iterations=1)进行腐蚀操作。

dilate(erode,None,iterations=1)进行膨胀操作。

importnumpy asnp

# 读取照片

img=cv2.imread( 'girl.jpg')

# 图像缩放

img = cv2.resize(img, None,fx= 0.5,fy= 0.5)

rows,cols,channels = img.shape

print(rows,cols,channels)

cv2.imshow( 'img',img)

# 图片转换为灰度图

hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

cv2.imshow( 'hsv',hsv)

# 图片的二值化处理

lower_blue=np.array([ 90, 70, 70])

upper_blue=np.array([ 110, 255, 255])

mask = cv2.inRange(hsv, lower_blue, upper_blue)

#腐蚀膨胀

erode=cv2.erode(mask, None,iterations= 1)

cv2.imshow( 'erode',erode)

dilate=cv2.dilate(erode, None,iterations= 1)

cv2.imshow( 'dilate',dilate)

# 窗口等待的命令,0表示无限等待

cv2.waitKey( 0)

结果如下:

ac09f7131f7794fc8efe199cb0789079.png

观察上图: 对于这个图片,无论是腐蚀或膨胀,都起到了很好的去图片噪声的操作,我们使用腐蚀后的图片也可以,我们使用膨胀后的图片也可以。

7.遍历每个像素点进行颜色替换

图片是由每一个像素点组成的,我们就是要找到腐蚀后得到图片的,白色底色处的像素点,然后将原图中对应位置处的像素点,替换为红色。

importcv2

importnumpy asnp

# 读取照片

img=cv2.imread( 'girl.jpg')

# 图像缩放

img = cv2.resize(img, None,fx= 0.5,fy= 0.5)

rows,cols,channels = img.shape

print(rows,cols,channels)

cv2.imshow( 'img',img)

# 图片转换为灰度图

hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

cv2.imshow( 'hsv',hsv)

# 图片的二值化处理

lower_blue=np.array([ 90, 70, 70])

upper_blue=np.array([ 110, 255, 255])

mask = cv2.inRange(hsv, lower_blue, upper_blue)

#腐蚀膨胀

erode=cv2.erode(mask, None,iterations= 1)

cv2.imshow( 'erode',erode)

dilate=cv2.dilate(erode, None,iterations= 1)

cv2.imshow( 'dilate',dilate)

#遍历每个像素点,进行颜色的替换

fori inrange(rows):

forj inrange(cols):

iferode[i,j]== 255: # 像素点为255表示的是白色,我们就是要将白色处的像素点,替换为红色

img[i,j]=( 0, 0, 255) # 此处替换颜色,为BGR通道,不是RGB通道

cv2.imshow( 'res',img)

# 窗口等待的命令,0表示无限等待

cv2.waitKey( 0)

效果如下:

9c5b1684a2af193a314745c442c70033.png

如此,我们就完成了一张证件照的底色替换。

作者:黄伟呢

来源: 数据分析与统计学之美

OpenCV-Python,计算机视觉开发利器

对于Python实现证件照底色的方法,我们可以采用多种方式来实现。 第一种方式是使用remove.bg工具。remove.bg是一个在线工具,可以帮助我们快速去除照片的背景。只需要将证件照上传到remove.bg网站,它会自动去除背景并返回一张只有人物的透明背景图片。 第二种方式是使用Python的PIL/Pillow库。PIL/Pillow库是Python中常用的图像处理库,它提供了许多图像处理功能。我们可以使用PIL/Pillow库中的相关函数来实现证件照底色的功能,例如使用alpha通道来设置背景颜色。 第三种方式是使用Python的matplotlib和numpy模块。matplotlib和numpy模块可以帮助我们读取、处理和保存图像。我们可以使用这两个模块来实现证件照底色的功能,比如使用numpy数组来修改图像的背景颜色,然后使用matplotlib来保存修改后的图像。 第四种方式是使用Python的opencv库。opencv是一个强大的计算机视觉库,它提供了许多图像处理和计算机视觉的功能。我们可以使用opencv库中的函数来实现证件照底色的功能,比如使用图像分割算法将人物从背景中分离出来,然后再将新的背景添加到图像中。 请根据你的需求和熟悉程度选择其中一种方式来实现证件照底色。简单来说,你可以使用remove.bg工具、PIL/Pillow库、matplotlib和numpy模块或opencv库来实现证件照底色的功能。希望这些方法对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值