--------------------转载自网络---------------------
diag函数功能:矩阵对角元素的提取和创建对角阵
设以下X为方阵,v为向量
1、X
= diag(v,k)当v是一个含有n个元素的向量时,返回一个n+abs(k)阶方阵X,向量v在矩阵X中的第k个对角线上,k=0表示主对角线,k>0表示在主对角线上方,k<0表示在主对角线下方。例1:
v=[1 2 3];
diag(v, 3)
ans =
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
注:从主对角矩阵上方的第三个位置开始按对角线方向产生数据的
例2:
v=[1 2 3];
diag(v, -1)
ans =
0
0 0 0
1
0 0 0
0
2 0 0
0
0 3 0
注:从主对角矩阵下方的第一个位置开始按对角线方向产生数据的
2、X = diag(v)
向量v在方阵X的主对角线上,类似于diag(v,k),k=0的情况。
例3:
v=[1 2 3];
diag(v)
ans =
1 0 0
0 2 0
0 0 3
注:写成了对角矩阵的形式
3、v =
diag(X,k)
返回列向量v,v由矩阵X的第k个对角线上的元素形成
例4:
v=[1 0 3;2 3 1;4 5 3];
diag(v,1)
ans =
0
1
注:把主对角线上方的第一个数据作为起始数据,按对角线顺序取出写成列向量形式
4、v
= diag(X)返回矩阵X的主对角线上的元素,类似于diag(X,k),k=0的情况例5:
v=[1 0 0;0 3 0;0 0 3];
diag(v)
ans =
1
3
3
或改为:
v=[1 0 3;2 3 1;4 5 3];
diag(v)
ans =
1
3
3
注:把主对角线的数据取出写成列向量形式
5、diag(diag(X))
取出X矩阵的对角元,然后构建一个以X对角元为对角的对角矩阵。例6:
X=[1 2;3
4] diag(diag(X))
X =
1 2
3 4
ans =
1 0
0 4