文章目录
MATLAB基础知识
标题
-
除法运算
有右除 / 和 左除
若A矩阵是非奇异矩阵,B/A等效于B*inv(A)
inv(),矩阵求逆 -
乘方运算
要求A为方阵
A^2
-
点运算
点运算符:.* ./ .\ .^
指对应元素进行相应运算,要求矩阵同型 -
关系运算
关系运算符:> < >= <= == ~= -
逻辑运算
逻辑运算符:& | ~
1.7字符串的处理
- 字符串的表示
xm=' Hello World '
字符串中有单引号,则用两个单引号表示
xm=' I " m a teacher '
- 字符串的操作
- 字符串的执行
t=pi
m=' [t,sin(t),cos(t)] '
eval(m)
MATLAB矩阵处理
⑴提取矩阵的对角线元素
diag(A):提取矩阵A对角线上的元素产生一个列向量
diag(A,K):提取第K条对角线上的元素产生一个列向量
⑵构造对角阵
diag(v):以向量V为主对角线元素产生对角矩阵
diag(v,K):以向量V为第K条对角线元素产生对角矩阵
triu(A)
triu(A,K)
下三角矩阵
tril
A=[1,2,3;4,5,6;7,8,9]
A.'
A'
rot90(A,k)
fliplr(A):左右翻转
flipud(A):上下翻转
inv(A):求矩阵A的逆
det(A)
rank(A)
trace(A)
norm(V,1):1一范数
norm(V)或norm(V,2):2一范数
norm(V,inf):♾️一范数
cond(v,1):计算矩阵A在1–范数下的条件数
cond(v)或con(v,2):2–范数
cond(v,inf):♾️–范数
2.4矩阵的特征值与特征向量
E=eig(A):求矩阵A的所有特征值,构成向量E
[X,D]=eig(A):求矩阵A的所有特征值,构成对角阵D,并产生矩阵X,X的各列是对应的特征向量
2.5稀疏矩阵
A=sparse(S):讲矩阵S转化为稀疏存储方式的矩阵A
S=full(A):将矩阵A转化为完全存储方式的矩阵S
sparse(m,n):生成一个m×n所有元素都是零的稀疏矩阵
sparse(u,v,s):
u,v,s是三个等长向量
s是要建立的稀疏矩阵的非零元素,u(i)和v(i)分别是行和列的下标
B=spconvert(A)
[B,d]=spdiags(A):从带状稀疏矩阵A中提取所有非零对角线元素赋给矩阵B,以及这些非零对角线元素的位置向量d
A=spadiags(B,d,m,n):产生带状稀疏矩阵的稀疏存储矩阵A
m,n为原带状稀疏矩阵的行数和列数
向量d为非零对角线的位置
speye(m,n):返回一个m×n的稀疏存储单位矩阵
MATLAB程序流程控制
顺序结构程序
edit test
A=input(' 请输入变量A的值 ')
S=' me '
disp(S)
pause(60)
用if语句实现选择结构
if 条件
语句组
end
if 条件
语句组1
else
语句组2
end
if 条件1
语句组1
else if 条件2
语句组2
else
语句组3
end
用switch语句实现选择结构
switch 表达式
case 结果表1
语句组1
case 结果表2
语句组2
…
otherwise
语句组n
end
case{3,4,5} 单元数据
disp(333)
用for语句实现循环结构
for k=[1,2,3,4,5] 每有一个元素执行一次
disp(6)
end
for k=1:2:10
end
k的结果为9
函数参数与变量的作用域
global ALPHA
MATLAB绘图
x=[2.5,3.5,4,5]
y=[1.5,2.0,1,1.5]
plot(x,y)
x=[2.5,3.5,4,5]
plot(x)
x=[1,2,3]
y=[1,2,3;4,5,6]
plot(x,y)