signature=26e3fa40cff08d52a53392bd149aa17b,AMS eBooks: Memoirs of the American Mathematical Society

该工作连接了对称群的投影表示理论与$Q(n)$超群的降低算子理论,为对称群的投影表示提供新的分支结果。作者发展了$Q(n)$的降低算子理论,类似于$GL(n)$的理论,并应用于$Q(n)$模的张量积,揭示了重要的特殊翻译函子。
摘要由CSDN通过智能技术生成

Your device is paired with

for

another  days.

Modular branching rules for projective representations of symmetric groups and lowering operators for the supergroup $Q(n)$

About this Title

Alexander Kleshchev, Department of Mathematics, University of Oregon, Eugene, Oregon 97403 and Vladimir Shchigolev, Department of Algebra, Faculty of Mathematics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119899, Russia

Publication: Memoirs of the American Mathematical Society

Publication Year:

2012; Volume 220, Number 1034

ISBNs: 978-0-8218-7431-8 (print); 978-0-8218-9205-3 (online)

DOI: https://doi.org/10.1090/S0065-9266-2012-00657-5

Published electronically: March 7, 2012

Keywords: projective representations,

symmetric groups,

Lie superalgebras

MSC: Primary 20C30; Secondary 20C25, 20C20, 17B10.

View other years and numbers:

Table of Contents

Chapters

Introduction

1. Preliminaries

2. Lowering operators

Abstract

There are two approaches to projective representation theory of symmetric and alternating groups, which are powerful enough to work for modular representations. One is based on Sergeev duality, which connects projective representation theory of the symmetric group and representation theory of the algebraic supergroup $Q(n)$ via appropriate Schur (super)algebras and Schur functors. The second approach follows the work of Grojnowski for classical affine and cyclotomic Hecke algebras and connects projective representation theory of symmetric groups in characteristic $p$ to the crystal graph of the basic module of the twisted affine Kac-Moody algebra of type $A_{p-1}^{(2)}$.

The goal of this work is to connect the two approaches mentioned above and to obtain new branching results for projective representations of symmetric groups. This is achieved by developing the theory of lowering operators for the supergroup $Q(n)$ which is parallel to (although much more intricate than) the similar theory for $GL(n)$ developed by the first author. The theory of lowering operators for $GL(n)$ is a non-trivial generalization of Carter’s work in characteristic zero, and it has received a lot of attention. So this part of our work might be of independent interest.

One of the applications of lowering operators is to tensor products of irreducible $Q(n)$-modules with natural and dual natural modules, which leads to important special translation functors. We describe the socles and primitive vectors in such tensor products.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值