pytorch保存模型pth_PyTorch实现断点继续训练

本文介绍了PyTorch中模型的保存与加载,包括保存整个Module和模型参数。讨论了模型训练过程中的保存、断点继续训练以及epoch的恢复。强调了初始化随机数种子、多步长SGD训练和保存最佳结果的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前写的这篇文章内容不是很全面,今天组会师兄给予了指正并认真讲解,进而进行了相关的更新,见解可能不是很全面,如有问题恳请指正

关于这次更新主要有以下几方面的内容改进(更新于20200426)

  1. 对于多步长训练需要保存lr_schedule
  2. 初始化随机数种子
  3. 保存每一代最好的结果

最近在尝试用CIFAR10训练分类问题的时候,由于数据集体量比较大,训练的过程中时间比较长,有时候想给停下来,但是停下来了之后就得重新训练,之前师兄让我们学习断点继续训练及继续训练的时候注意epoch的改变等,今天上午给大致整理了一下,不全面仅供参考

Epoch:  9 | train loss: 0.3517 | test accuracy: 0.7184 | train time: 14215.1018  s
Epoch:  9 | train loss: 0.2471 | test accuracy: 0.7252 | train time: 14309.1216  s
Epoch:  9 | train loss: 0.4335 | test accuracy: 0.7201 | train time: 14403.2398  s
Epoch:  9 | train loss: 0.2186 | test accuracy: 0.7242 | train time: 14497.1921  s
Epoch:  9 | train loss: 0.2127 | test accuracy: 0.7196 | train time: 14591.4974  s
Epoch:  9 | train loss: 0.1624 | test accuracy: 0.7142 | train time: 14685.7034  s
Epoch:  9 | train loss: 0.1795 | test accuracy: 0.7170 | train time: 14780.2831  s
绝望!!!!!训练到了一定次数发现训练次数少了,或者中途断了又得重新开始训练

一、模型的保存与加载

PyTorch中的保存(序列化,从内存到硬盘)与反序列化(加载,从硬盘到内存)

torch.save主要参数: obj:对象 、f:输出路径

torch.load 主要参数 :f:文件路径 、map_location:指定存放位置、 cpu or gpu

模型的保存的两种方法:

1、保存整个Module

torch.save(net, path)

2、保存模型参数

state_dict = net.state_dict()
torch.save(state_dict , path)

二、模型的训练过程中保存

checkpoint = {
        "net": model.state_dict(),
        'optimizer':optimizer.state_dict(),
        "epoch": epoch
    }

将网络训练过程中的网络的权重,优化器的权重保存,以及epoch 保存,便于继续训练恢复

在训练过程中,可以根据自己的需要,每多少代,或者多少epoch保存一次网络参数,便于恢复,提高程序的鲁棒性。

checkpoint = {
        "net": model.state_dict(),
        'optimizer':optimizer.state_dict(),
        "epoch": epoch
    }
    if not os.pat
好的,下面是一个简单的 PyTorch 代码示例,演示了如何使用 `torch.save()` 和 `torch.load()` 函数实现模型断点恢复训练。代码中使用的是 ResNet18 模型和 CIFAR10 数据集。 ```python import torch import torchvision import torchvision.transforms as transforms # 定义是否使用GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义超参数 num_epochs = 10 batch_size = 128 learning_rate = 0.001 # 加载 CIFAR10 数据集 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) # 定义 ResNet18 模型 model = torchvision.models.resnet18(pretrained=False) num_ftrs = model.fc.in_features model.fc = torch.nn.Linear(num_ftrs, 10) model = model.to(device) # 定义损失函数和优化器 criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4) # 定义模型保存路径和文件名 checkpoint_path = './checkpoint.pth' # 加载之前保存模型参数 try: checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] print("Successfully loaded checkpoint '{}' (epoch {})".format(checkpoint_path, start_epoch)) except: print("No checkpoint found at '{}'".format(checkpoint_path)) start_epoch = 0 # 训练模型 for epoch in range(start_epoch, num_epochs): for i, (images, labels) in enumerate(trainloader): images = images.to(device) labels = labels.to(device) # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(trainloader), loss.item())) # 保存模型参数 torch.save({ 'epoch': epoch+1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss }, checkpoint_path) print('Finished Training') ``` 在这个代码示例中,我们首先加载 CIFAR10 数据集,并定义 ResNet18 模型、损失函数和优化器。然后我们定义了一个模型保存路径和文件名,并尝试加载之前保存模型参数。如果成功加载,就从加载的 epoch 开始训练,否则从第 0 个 epoch 开始训练。在训练过程中,每训练完一个 epoch 就保存一次模型参数,以便恢复训练时可以从最近一次保存的参数开始训练。最后输出训练完成信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值