模拟黑洞图像_通过模拟计算,研究团队获得了更加清晰、锐利的黑洞图像

8a97dfbd0810e9e00298bb2fe0c200f9.png

黑洞的图像,在由黑洞投射的“阴影”周围具有明亮的发射环。该环由一堆更加尖锐的子环组成,这些子环与光子到达观察者之前围绕黑洞的轨道数相对应。图片:George Wong (UIUC) and Michael Johnson (CfA)

去年四月,Event Horizon望远镜(EHT)发布了黑洞的第一张影像,引起了国际关注。今天,一组研究人员发表了新的计算结果,这些计算结果可预测由于极端引力光弯曲而导致的黑洞图像中惊人且复杂的子结构。

7ade1b371ad31f4a61876450c7611306.png

哈佛和史密森尼天体物理学中心的迈克尔·约翰逊(Michael Johnson)解释说:“黑洞的图像实际上包含一系列嵌套的环。每个环具有大致相同的直径,但变得越来越尖锐,因为它的光在到达观察者之前绕黑洞绕了多次。使用当前的EHT图像,我们仅瞥见了黑洞全部复杂性中的一小部分。”

因为黑洞会捕获穿过其事件视界的任何光子,所以它们会在周围的明亮炽热气体的周围投射阴影。一个“光子环”围绕着这个阴影,它是由黑洞附近的强引力所集中的光所产生的。该光子环带有黑洞的指纹-它的大小和形状编码黑洞的质量和旋转。借助EHT图像,黑洞研究人员有了研究这些非凡物体的新工具。

高级研究学院的丹尼尔·卡佩克(Daniel Kapec)说:“这是思考黑洞物理学的绝佳时机。最终我们观测到爱因斯坦的广义相对论做出的许多惊人的预测,我认为我们可以期待未来几年的许多进步。作为一个理论家,我发现理论和实验之间的快速收敛特别有意义。我希望随着这些实验变得更加敏感,我们可以继续分离和观察更普遍的广义相对论预测。”

b1b252ba2fbe8b59372dc955c9afb84e.png

黑洞会在明亮的周围物质的图像上投射阴影,因为它们强大的引力场会弯曲并捕获光线。阴影以明亮的光环为边界,该光环与在黑洞附近通过的并逃逸的光子相对应。该环实际上是一堆越来越尖锐的子环,第n个子环对应于在到达观察者之前绕黑洞绕过n/2次的光子。此动画显示了如何从这些子环以及形成该图像的光子轨迹形成黑洞图像。图片:哈佛和史密森尼天体物理学中心

该研究小组包括观测天文学家,理论物理学家和天体物理学家。

伊利诺伊大学厄本那-香槟分校的物理学研究生乔治·王(George Wong)说:“汇集了来自不同领域的专家,使我们能够真正将对光子环的理论理解与观察的可能性联系起来。” 王开发了软件,以比以前计算的分辨率更高的分辨率生成模拟黑洞图像,并将其分解为预测的子图像系列。“最初的经典手工计算促使我们将模拟推向新的极限。”

ecef48f34e321e092d55fe3027a66936.png

参考:黑洞光子环的通用干涉签名。图片:Michael D. Johnson(CfA),模拟:George Wong(UIUC)

研究人员还发现,黑洞的图像子结构为观察黑洞创造了新的可能性。约翰逊说:“真正令我们感到惊讶的是,虽然几乎无法用肉眼察觉到嵌套的子环图像(甚至是完美的图像),但它们对于被称为干涉仪的望远镜阵列却是强而清晰的信号。尽管捕获黑洞图像通常需要许多分布式望远镜,但子环非常适合仅使用相距很远的两台望远镜进行研究。在EHT上增加一台太空望远镜就足够了。”

哈佛研究员协会的亚历克斯·卢普萨斯卡(Alex Lupsasca)说:“黑洞物理学一直是一门美丽的学科,具有深厚的理论意义,但现在它也已成为一门实验科学。作为一名理论家,我很高兴能最终获得我们经过很长时间抽象思考的这些对象的真实数据。”

研究结果发表在《科学进展》上。

黑洞是一种极为神秘的天体,由于其巨大的质量和引力场,对于物理学家而言具有极大的研究价值。在Matlab中,可以使用一些数学模型和计算方法来生成黑洞模拟图像,以便更好地理解黑洞的物理特性。 以下是一个简单的例子,展示了如何使用Matlab生成黑洞模拟图像: 1. 定义黑洞的Schwarzschild半径,可以使用下面的公式计算: ```matlab R_s = 2 * G * M / (c^2); ``` 其中,G表示引力常数,M表示黑洞的质量,c表示光速。 2. 创建一个二维网格,用于表示黑洞的空间范围。可以使用meshgrid函数生成二维网格坐标: ```matlab [x, y] = meshgrid(linspace(-10, 10, 100)); ``` 这里假设黑洞的空间范围为[-10, 10]。 3. 计算每个网格点到黑洞中心的距离,可以使用下面的公式: ```matlab r = sqrt(x.^2 + y.^2); ``` 4. 根据Schwarzschild半径和距离计算引力势能,可以使用下面的公式: ```matlab phi = -G * M ./ r; phi(r < R_s) = -G * M / R_s; ``` 这里假设黑洞的质量为M,引力常数为G。 5. 绘制等势能线,以便更好地观察黑洞的形状。可以使用contour函数绘制等势能线: ```matlab contour(x, y, phi, linspace(-2*G*M/R_s, 0, 100)); ``` 这里假设绘制100条等势能线,范围为[-2GM/R_s, 0]。 运行上面的代码,可以看到一个简单的黑洞模拟图像,其中等势能线表示黑洞的引力场分布。需要注意的是,这只是一个简单的模拟,实际的黑洞形态和引力场分布非常复杂,需要更加精细的计算模拟方法才能得到准确的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值