引言:在前面一小节中我们指出,在含有多个参数的模型中,如何做出对模型的优化。岭回归更好?还是lasso回归更优?参考:正则化(2):与岭回归相似的 Lasso 回归。在这种情况下,还要一种折中的办法,就是选择弹性网络回归(Elastic Net Regression)。
1. lasso回归与岭回归的异同
如下,如果已知模型中的很多变量为无关变量,如astrological offset和airspeed scalar等,我们倾向于选择lasso回归,从而使得拟合模型更加简洁和便于解读。
Size = y-intercept + slope x Weight + diet differece x Hight Fat Diet +
+ astrological offset x Sign + airspeed scalar x Airspeed of Swallow
如下,如果模型中有非常多的变量,我们无法知道其是否是无关变量,如基于10000个基因的表达预测小鼠体积。在这种情况下,我们应该选择lasso回归,还是岭回归呢?

答

弹性网络回归结合了lasso回归和岭回归的特点,适用于处理含有相关参数的模型。当λ1=0,λ2=0时回归至最小二乘法;λ1=0,λ2>0时类似lasso;λ1>0,λ2=0时类似岭回归;而λ1>0,λ2>0时,它是两者的综合,能筛选并缩减相关参数。
最低0.47元/天 解锁文章
1609

被折叠的 条评论
为什么被折叠?



