opc r参数 ua_SKAT分析___R语言

本文介绍了R语言中的SKAT包在OPC和UA分析中的应用,包括如何安装和使用SKAT包进行SNP与表型关联分析、功效和样本量计算。详细讨论了SKAT的二分类性状调整方法、权重设置、SKAT-O测试、常见和稀有变异的合并检测,以及如何处理基因型缺失和亲缘关系调整。此外,还提到了针对X染色体的分析方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文献

曾平, 赵杨, 陈峰. 新一代测序数据的罕见遗传变异关联性统计方法[J]. 中国卫生统计, 2015, 32(006):1091-1096.

官方指南

https://cran.r-project.org/web/packages/SKAT/SKAT.pdf https://CRAN.R-project.org/package=SKAT

首先,打开R-Studio,安装“SKAT”包

install.packages("SKAT")

获取包的用法

??SKAT

1a8d6460378042d752c53629e1fd9c12.png

从描述文件可以看到版本号

SKAT的两个功能:

  1. 计算SNP与表型的关系

  2. 计算功效或样本量

先来看一下关联分析的做法

示例数据集“SKAT.example”是一个矩阵(Z),包括2000例样本的67个SNP信息,连续(y.c)或二分类(y.b)的表型向量,和一个协变量矩阵(X)。

> library(Matrix)> library(SPAtest)> library(SKAT) #加载包> data(SKAT.example)#加载示例数据> summary(SKAT.example) #查看数据类型    Length Class  Mode   Z   134000 -none- numericX     4000 -none- numericy.c   2000 -none- numericy.b   2000 -none- numeric> names(SKAT.example)[1] "Z"   "X"   "y.c" "y.b"> attach(SKAT.example)

为了进行关联分析,在运行SKAT之前,应该先运行 SKAT_Null_Model函数来估计H0假设(即一组罕见变异和疾病之间无关联,等价于随机效应的方差成分为0)下的模型参数。

对于连续型变量的表型变量> obj> SKAT(Z, obj)$p.value[1] 0.002877041 #这是P值,小于0.05,拒绝H0假设
对于二分类变量的表型变量> obj> SKAT(Z, obj)$p.value[1] 0.1401991 #这里,P值大于0.05,接受上面的H0假设。可以看出,对于二分类变量,计算结果是相对保守的。

当表型为二分类变量,且样本量小于2000时,SKAT的计算结果是保守的。研究者设计moment matching adjustment (MA)方法通过估计经验方差和峰度来调整渐近零分布。接下来,为了示例,抽出200例样本运行SKAT.

> IDX> obj.sSample size (non-missing y and X) = 200, which is < 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值