柱坐标系下的ns方程_计算流体力学 | 控制方程

1e65380b9e6236195c85742b06fa92fa.png

内容结构指引

计算流体力学概述 | 流体力学的一些基本概念 | 流体力学的控制方程

粘性流动的控制方程(纳维-斯托克斯方程) | 无粘流的控制方程(欧拉方程)

适合CFD的控制方程 | NS方程的无量纲化 | 简化NS方程

主要名词检索

计算流体力学(CFD) | 离散化 | 连续介质假设 | 流动微团 | 控制体 | 流动模型 | 物质导数

当地导数 | 迁移导数 | 速度散度 | 拉格朗日描述 | 欧拉描述 | 控制方程 | 连续性方程 | 动量方程

能量方程 | 守恒型 | 非守恒型 | 纳维-斯托克斯方程 | 欧拉方程 | 守恒型方程的向量形式

通向量 | 源项 | 解向量 | 无量纲量 | 特征量 | 无量纲化 | 定常流方程 | 不可压流方程

边界层方程 | 小扰动方程


计算流体力学概述

a. 定义

计算流体力学(CFD)是 通过数值方法求解流体力学控制方程,得到流场的离散定量描述,并以此预测流体运动规律的学科。

实际问题的流动控制方程复杂,解析解难以获得,我们通常采用数值方法求解,值得一提的是,在计算机产生之前,数值方法已然产生。

离散化分为流场的离散化(网格生成)方程的离散化(计算格式)

c05255645ec32c5931bf50cc4b5b237f.png
流体力学研究的三种方法

d97a258f0951a15919ff9b42814ff94a.png
CFD与试验相比各有千秋,CFD不能完全替代真实试验

b. CFD常用方法

9a1af381bb66ec1344c7052f554c2c94.png
CFD常用方法

c. CFD流程

问题定义(确定模拟目的、确定计算域)

前处理和求解(创建几何实体、设计划分网格、设置物理问题、定义求解器、求解监控)

后处理过程(查看计算结果、修订模型)

dae23f98029fd6ddfd1b032196e013e1.png
CFD实现流程

流体力学的一些基本概念

1)连续介质假设:流体连续地充满整个空间

2&#x

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
为了求解坐标系下波动方程的有限差分问题,我们可以使用Matlab编写程序。具体步骤如下: 1.定义网格点以及边界条件。 在坐标系下,波动方程通常为二阶偏微分方程。我们可以用有限差分法将其转化为差分方程,从而求解。 假设我们要求解波动方程在一个半径为R,高度为H的圆体内部的解。我们定义了i方向上有Ni个网格点,j方向上有Nj个网格点,k方向上有Nk个网格点,因此我们可以用三维数组u(i,j,k)表示解在每个网格点上的值。 同时,我们需要定义边界条件。在这个圆体内部,我们可以将边界条件选择为Dirichlet边界条件,即在圆体边界上,我们可以事先给出u的值。在其他区域内部,我们则需要定义给定的初始条件。 2.编写差分方程求解程序。 根据波动方程和有限差分法的原理,我们可以得到差分方程。对于坐标系下的波动方程,我们可以用以下公式表示: (u(i+1,j,k)-2*u(i,j,k)+u(i-1,j,k))/(delta_r^2)+(1/r)*((u(i+1,j,k)-u(i-1,j,k))/(2*delta_r))+(u(i,j+1,k)-2*u(i,j,k)+u(i,j-1,k))/(delta_z^2)=c^2*(u(i,j,k+1)-2*u(i,j,k)+u(i,j,k-1))/(delta_t^2) 其中,delta_r表示i方向网格间隔,delta_z表示j方向网格间隔,delta_t表示时间步长,c为波速,r为极径。 在Matlab中,我们可以将该公式转化为差分方程,用for循环实现求解过程。 3.输出结果。 在程序完成运行后,我们通常需要将结果可视化,以便更好地理解和分析解。 通过使用Matlab进行编程,我们可以轻松高效地求解坐标系下的波动方程有限差分问题,得到精度较高的数值解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值