已知f(x)可积,如何证明f(x)的平方可积

文章讨论了如何利用函数可积性的性质证明其平方的可积性。通过一个定理,即若函数f(x)在[a,b]上可积,则|f(x)|也可积,并存在积分不等式:∫[a,b]|f(x)|dx≤√(∫[a,b]f^2(x)dx)*√(∫[a,b]1dx)。通过对不等式进行变换,可以进一步论证f^2(x)的可积性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要证明函数f(x)的平方可积,需要用到以下定理:

若函数f(x)在区间[a,b]上可积,则|f(x)|也可积,并且有下面的不等式成立:

∫[a,b]|f(x)|dx ≤ √(∫[a,b]f^2(x)dx) * √(∫[a,b]1dx)

根据上述定理,可以将f(x)的平方表示为f^2(x) = |f(x)| * f(x),因为|f(x)|和f(x)都可积,所以f^2(x)也可积。同时,由于f(x)可积,因此|f(x)|也可积,根据上述不等式,可以得出:

∫[a,b]|f(x)|dx ≤ √(∫[a,b]f^2(x)dx) * √(∫[a,b]1dx)

将上述不等式两边平方,得到:

(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值