要证明函数f(x)的平方可积,需要用到以下定理:
若函数f(x)在区间[a,b]上可积,则|f(x)|也可积,并且有下面的不等式成立:
∫[a,b]|f(x)|dx ≤ √(∫[a,b]f^2(x)dx) * √(∫[a,b]1dx)
根据上述定理,可以将f(x)的平方表示为f^2(x) = |f(x)| * f(x),因为|f(x)|和f(x)都可积,所以f^2(x)也可积。同时,由于f(x)可积,因此|f(x)|也可积,根据上述不等式,可以得出:
∫[a,b]|f(x)|dx ≤ √(∫[a,b]f^2(x)dx) * √(∫[a,b]1dx)
将上述不等式两边平方,得到:
(