皮尔逊波形相似度python代码

皮尔逊相关系数用来衡量两个变量之间的相似程度,值越接近1,则两个变量之间的相关性越大,值越接近0,则两个变量之间的相关性越小。皮尔逊相关系数可以用来衡量两个波形之间的相似度。

在 Python 中,可以使用 NumPy 库中的函数 numpy.corrcoef 来计算皮尔逊相关系数。

例如,假设你有两个向量 xy,想要计算它们之间的皮尔逊相关系数,可以使用如下代码:

import numpy as np

x =[1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

corr, _ = np.corrcoef(x, y)
print(corr)

输出结果为:

[[1.         0.98198051]
 [0.98198051 1.        ]]

第一行第一列的值为 1,表示 x 与 x 之间的相关系数;第二行第一列的值为 0.98198051,表示 x 与 y 之间的相关系数。因此,这两个向量之间的皮尔逊相关系数为 0.98198051。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值