皮尔逊相关系数用来衡量两个变量之间的相似程度,值越接近1,则两个变量之间的相关性越大,值越接近0,则两个变量之间的相关性越小。皮尔逊相关系数可以用来衡量两个波形之间的相似度。
在 Python 中,可以使用 NumPy 库中的函数 numpy.corrcoef
来计算皮尔逊相关系数。
例如,假设你有两个向量 x
和 y
,想要计算它们之间的皮尔逊相关系数,可以使用如下代码:
import numpy as np
x =[1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]
corr, _ = np.corrcoef(x, y)
print(corr)
输出结果为:
[[1. 0.98198051]
[0.98198051 1. ]]
第一行第一列的值为 1,表示 x 与 x 之间的相关系数;第二行第一列的值为 0.98198051,表示 x 与 y 之间的相关系数。因此,这两个向量之间的皮尔逊相关系数为 0.98198051。